留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氚在锆合金包壳材料中的扩散行为模拟

周小凯 佟立丽

周小凯, 佟立丽. 氚在锆合金包壳材料中的扩散行为模拟[J]. 强激光与粒子束, 2021, 33: 036001. doi: 10.11884/HPLPB202133.200275
引用本文: 周小凯, 佟立丽. 氚在锆合金包壳材料中的扩散行为模拟[J]. 强激光与粒子束, 2021, 33: 036001. doi: 10.11884/HPLPB202133.200275
Zhou Xiaokai, Tong Lili. Numerical simulation and experimental verification on the diffusion behavior of tritium in zirconium alloy cladding materials[J]. High Power Laser and Particle Beams, 2021, 33: 036001. doi: 10.11884/HPLPB202133.200275
Citation: Zhou Xiaokai, Tong Lili. Numerical simulation and experimental verification on the diffusion behavior of tritium in zirconium alloy cladding materials[J]. High Power Laser and Particle Beams, 2021, 33: 036001. doi: 10.11884/HPLPB202133.200275

氚在锆合金包壳材料中的扩散行为模拟

doi: 10.11884/HPLPB202133.200275
基金项目: 国家科技重大专项(2019ZX06004013)
详细信息
    作者简介:

    周小凯(1995—),男,硕士研究生,从事反应堆严重事故研究;zhouxiaokai@sjtu.edu.cn

    通讯作者:

    佟立丽(1975—),女,副研究员,从事核反应堆安全研究;lltong@sjtu.edu.cn

  • 中图分类号: TL929

Numerical simulation and experimental verification on the diffusion behavior of tritium in zirconium alloy cladding materials

  • 摘要: 基于氚扩散基本模型建立了氚扩散行为一维模拟程序,对模拟程序进行了典型实验验证,模拟结果与实验结果符合较好。分析了不同氚浓度、温度分布对锆合金包壳材料中氚的扩散行为的影响。分析结果表明:包壳-芯块间隙内氚浓度的升高会导致进出包壳的氚扩散通量提高,渗透通量增大;由于包壳氧化层相对较低的扩散系数,包壳氧化层的存在对氚渗透有较大的限制作用;温度对氚扩散速率的影响很显著,温度越高,扩散速度越快;锆合金外表面氧化层的相对低温限制了氚渗透出包壳管的速率,温度梯度导致的热致扩散有利于氚向包壳冷测扩散。
  • 图  1  网格示意图

    Figure  1.  Diagram of the grid

    图  2  模拟与实验结果对比

    Figure  2.  Comparison of calculation and experiment results

    图  3  Surry-2实验氚释放份额随时间变化的模拟结果

    Figure  3.  Simulation results of tritium release fraction in Surry-2 experiment

    图  4  不同氚分压情况下模拟结果对比

    Figure  4.  Comparison of calculation results under different tritium partial pressure

    图  5  不同温度分布情况下模拟结果对比

    Figure  5.  Comparison of calculation results under different temperature

    图  6  锆合金中氚浓度分布

    Figure  6.  Simulation results of distribution of tritium concentration in zircaloy

    表  1  氘扩散实验参数表

    Table  1.   Parameters of the deuterium diffusion experiment

    casethickness
    (outer oxide layer)/μm
    thickness
    (inner oxide layer)/μm
    surface area/cm2diffusion coefficient
    (in outer oxide layer)/(cm2/s)
    diffusion coefficient
    (in inner oxide layer)/(cm2/s)
    GNF-Ziron0.5142.2×10−131.6×10−14
    VB0.680.8244.2×10−147.4×10−15
    下载: 导出CSV

    表  2  Surry-2燃料包壳氚释放实验参数

    Table  2.   Parameters of the tritium diffusion experiment of Surry-2 fuel caldding

    parameter external diameter of
    cladding/mm
    inner diameter of
    cladding/mm
    height/mm surface area/m2 temperature/K burnup/
    (GWd/MTU)
    thickness of dense
    oxide layer/μm
    value 5.359 4.742 5.5 8.72664×10−5 773 36 2
    下载: 导出CSV
  • [1] 陈海英, 张春明, 王韶伟. 压水堆3H源项计算分析[J]. 原子能科学技术, 2016, 50(2):459-463. (Chen Haiying, Zhang Chunming, Wang Shaowei. Calculation analysis of tritium source term in PWR[J]. Atomic Energy Science and Technology, 2016, 50(2): 459-463
    [2] GB 6249-2011. 核动力厂环境辐射防护规定[S].

    GB 6249-2011. Regulations for environmental radiation protection of nuclear power plant[S]
    [3] Kearns J J. Diffusion coefficient of hydrogen in alpha zirconium, zircaloy-2, zircaloy-4[J]. Journal of Nuclear Materials, 1972, 43: 330-338. doi: 10.1016/0022-3115(72)90065-7
    [4] Kunz W, Greger G U, Munzel H. Diffusion of tritium in zircaloy-2[J]. Journal of Nuclear Materials, 1980, 88: 15-22. doi: 10.1016/0022-3115(80)90381-5
    [5] Khatamian D. Diffusion of hydrogen in single crystals of monoclinic-ZrO2 and yttrium stabilized cubic zirconia[J]. Defect and Diffusion Forum, 2010, 297/301: 631-640. doi: 10.4028/www.scientific.net/DDF.297-301.631
    [6] Smith T. Kinetics and mechanism of hydrogen permeation of oxide films on zirconium[J]. Journal of Nuclear Materials, 1966, 18(3): 323-336. doi: 10.1016/0022-3115(66)90173-5
    [7] Hanson D L, Richards M B, Connors G P.TRIGO code description and user’s guide[R], GA-20128-911081, 2006.
    [8] Eung S K, Chang H O, Patterson M. Study on the tritium behaviors in the VHTR system. Part 1: Development of tritium analysis code for VHTR and verification[J]. Nuclear Engineering and Design, 2010, 240: 1758-1767. doi: 10.1016/j.nucengdes.2010.02.023
    [9] Longhurst G R. TMAP7 User Manual[R]. INL/EXT-04-02352, 2004.
    [10] Ohashi H, Sherman S. Tritium movement and accumulation in the NGNP system interface and hydrogen production[R]. INL/EXT-07-12746, 2007.
    [11] Yook D, Lee K J, Lee Y, et al. Estimation of the tritium behavior in the pebble type gas cooled reactor for hydrogen production[J]. Nuclear Science and Techniques, 2006, 43: 1522-1529. doi: 10.1080/18811248.2006.9711249
    [12] Aly A, Avramova M, Ivanov K, et al. Three dimensional fuel pin model validation by prediction of hydrogen distribution in cladding and comparison with experiment[R]. DOE-NEUP-13-5180, 2017.
    [13] Yamanaka S, Miyake M, Katsura M. Hydrogen solubility in zirconium alloys[J]. Journal of Nuclear Materials, 1995, 247(1/2): 315-321.
    [14] Park M Y, Kim B Y, Kim E S. Development of semi-empirical model for tritium permeation under non-uniform temperature distribution at heat exchanger tube wall[J]. Annals of Nuclear Energy, 2015, 75: 413-420. doi: 10.1016/j.anucene.2014.08.044
    [15] 黎辉, 梅其良, 付亚茹. 核电厂氚的产生和排放分析[J]. 原子能科学技术, 2015, 49(4):739-743. (Li Hui, Mei Qiliang, Fu Yaru. Analysis of generation and release of tritium in nuclear power plant[J]. Atomic Energy Science and Technology, 2015, 49(4): 739-743 doi: 10.7538/yzk.2015.49.04.0739
    [16] Sawatzky A. The diffusion and solubility of hydrogen in the alpha-phase of zircaloy-2[J]. Journal of Nuclear Materials, 1960, 2(1): 62-68. doi: 10.1016/0022-3115(60)90025-8
    [17] Takagi I, Une K, Miyamura S, et al. Deuterium diffusion in steam-corroded oxide layer of zirconium alloys[J]. Journal of Nuclear Material, 2011, 419: 339-346. doi: 10.1016/j.jnucmat.2011.06.001
    [18] Robinson S M, Chattin M R, Giaquinto J M, et al. Evaluation of tritium content and release from pressurized water reactor fuel cladding[R]. ORNL/SPR-2015/425, 2015.
    [19] Barberis P, Frichet A. Characterization of zircaloy-4 oxide layers by impedance spectroscopy[J]. Journal of Nuclear Materials, 1999, 273: 182-191. doi: 10.1016/S0022-3115(99)00025-2
    [20] Kammenzind B F, Franklin D G, Peters H R, et al. Hydrogen pickup and redistribution in alpha-annealed zircaloy-4[C]//11th International Symp on Zr in the Nuclear Industry. 1996: 338-370.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1064
  • HTML全文浏览量:  220
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-20
  • 修回日期:  2020-11-19
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回