留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于软核的超导腔失效在线补偿系统的研究

肖麟阁 戴建枰 邓子为 朱航

肖麟阁, 戴建枰, 邓子为, 等. 基于软核的超导腔失效在线补偿系统的研究[J]. 强激光与粒子束, 2021, 33: 044002. doi: 10.11884/HPLPB202133.200287
引用本文: 肖麟阁, 戴建枰, 邓子为, 等. 基于软核的超导腔失效在线补偿系统的研究[J]. 强激光与粒子束, 2021, 33: 044002. doi: 10.11884/HPLPB202133.200287
Xiao Lin'ge, Dai Jianping, Deng Ziwei, et al. Study of superconducting cavity failure online compensation system based on soft core[J]. High Power Laser and Particle Beams, 2021, 33: 044002. doi: 10.11884/HPLPB202133.200287
Citation: Xiao Lin'ge, Dai Jianping, Deng Ziwei, et al. Study of superconducting cavity failure online compensation system based on soft core[J]. High Power Laser and Particle Beams, 2021, 33: 044002. doi: 10.11884/HPLPB202133.200287

基于软核的超导腔失效在线补偿系统的研究

doi: 10.11884/HPLPB202133.200287
基金项目: 国家自然科学基金项目(11575216)
详细信息
    作者简介:

    肖麟阁(1994—),男,博士研究生,攻读方向为加速器高频技术;xiaolg@ihep.ac.cn

    通讯作者:

    戴建枰(1968—),男,博士,研究员,从事加速器物理与技术研究;jpdai@ihep.ac.cn

  • 中图分类号: TL503.6

Study of superconducting cavity failure online compensation system based on soft core

  • 摘要: 利用遗传算法较强的鲁棒性以及FPGA在并行计算方面的巨大优势,以中国加速器驱动次临界系统(C-ADS)注入器II的第四个超导加速组元(CM4)为例,开发了超导腔失效在线补偿FPGA程序,并使用束流动力学软件TRACEWIN对FPGA计算结果的可靠性进行验证。然后将其封装为IP核,以更通用的形式在嵌入式Linux系统中使用;同时,针对未来超导腔失效补偿系统的独立性、低延时的要求,应用MicroBlaze软核处理器编译了Linux系统和EPICS组件,在搭建的仿真通讯环境中验证了超导腔失效补偿系统的通信功能。
  • 图  1  遗传算法的工作流程

    Figure  1.  The flow of the genetic algorithm

    图  2  元件的自动拟合系统

    Figure  2.  The automatic fitting system of elements

    图  3  加速缝的纵向传输矩阵中S22项的多项式拟合的值和相对误差

    Figure  3.  The value and relative error of polyfit of S22 in longitudinal transfer matrix of gap

    图  4  FPGA中的遗传算法模块

    Figure  4.  Genetic algorithm module in FPGA

    图  5  正常情况下和补偿后的包络图

    Figure  5.  The envelope diagrams in normal and compensation situations

    图  6  补偿后的归一化RMS发射度增长

    Figure  6.  Normalized RMS emittance growth after compensation

    图  7  系统的硬件平台

    Figure  7.  The hardware platform of the system

    图  8  通信测试平台示意图

    Figure  8.  The communication test platform

    图  9  计算结果设置到PV量的图示

    Figure  9.  Diagram of setting up the calculated parameters to PVs

    表  1  多项式的部分系数

    Table  1.   Partial coefficients of the polynomial

    coefstd errTP>|t|[0.025, 0.975]
    constant−2.12280.009−237.9630.000[−2.140, −2.105]
    $E_{\rm{acc}}{E_{{\rm{in}}}}{\varphi _{\rm{s}}}$−1.95010.005−360.7890.000[−1.961, −1.939]
    $E_{\rm{acc}}^3$−0.00980.005−1.9820.048[−0.19, −0.000]
    $E_{\rm{acc}}E_{{\rm{in}}}^2$−3.33470.012−279.7350.000[−3.358, −3.311]
    $E_{\rm{acc}}\varphi _{\rm{s}}^2$0.05930.00319.2810.000[0.053, 0.065]
    ${E_{{\rm{in}}}}E_{\rm{acc}}^2$−0.34690.007−48.5600.000[−0.361, −0.333]
    $E_{{\rm{in}}}^3$5.56330.023244.0100.000[5.519, 5.608]
    下载: 导出CSV

    表  2  FPGA程序进行补偿计算的结果

    Table  2.   Calculation result of FPGA program

    elementstandard synchronous
    phase/(°)
    compensated synchronous
    phase/(°)
    standard
    ETL/MV
    compensated
    ETL/MV
    elementstandard magnetic
    field/T
    compensated magnetic
    field/T
    cavity1−25−11.891.8832.680sol15.564.29
    cavity2−20−17.901.8901.812sol25.395.06
    cavity3−23null1.874nullsol35.581.76
    cavity4−20−27.171.8462.144sol45.395.39
    cavity5−20−10.821.8142.263sol55.460.45
    下载: 导出CSV

    表  3  出口处标准与补偿后的情况下束流参数对比

    Table  3.   Comparison of beam parameters between the standard case and the compensated case

    parameters βx αx βy αy βz αz beam energy/MeV
    standard value 1.1805 −0.6735 1.1660 −0.6684 3.3297 0.7132 17.3672
    compensated value 1.1475 −0.6741 1.1550 −0.6778 3.1255 0.7394 17.1975
    mismatch factor 1.74% 0.92% 4.90%
    related error 0.98%
    下载: 导出CSV

    表  4  C-ADS部分故障设计指标

    Table  4.   The partial design requirements of failure in C-ADS

    time of tript<1 s1 s<t<10 s10 s<t<5 mint>5 min
    number of trip/yearno limit<25000<2500<25
    下载: 导出CSV
  • [1] 詹文龙, 徐瑚珊. 未来先进核裂变能——ADS嬗变系统[J]. 中国科学院院刊, 2016, 31(s2):32-36. (Zhan Wenlong, Xu Hushan. Future advanced nuclear fission energy—ADS transmutation system[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(s2): 32-36
    [2] 孙彪. 中国ADS加速器关键元件失效补偿及匹配研究[D]. 北京: 中国科学院大学, 2015: 27-30.

    Sun Biao. Compensation-rematch for major element failure of the C-ADS linac[D]. Beijing: University of Chinese Academy of Sciences, 2015: 27-30)
    [3] 邵勇, 戴建枰, 薛舟, 等. C-ADS注入器Ⅰ超导腔失效补偿模拟研究[J]. 核电子学与探测技术, 2016, 36(10):1016-1019. (Shao Yong, Dai Jianping, Xue Zhou, et al. Simulation for compensation of superconducting cavity in C-ADS injector-I[J]. Nuclear Electronics & Detection Technology, 2016, 36(10): 1016-1019 doi: 10.3969/j.issn.0258-0934.2016.10.006
    [4] Xue Zhou, Dai Jianping, Meng Cai. A new method for compensation and rematch of cavity failure in the C-ADS Linac[J]. Chinese Physics C, 2016, 40: 067003. doi: 10.1088/1674-1137/40/6/067003
    [5] Galambos J, Henderson S, Zhang Y, et al. A fault recovery system for the SNS superconducting cavity linac[C]//Proceedings of LINAC. 2006: 174-176.
    [6] Galambos J. Operational experience of a superconducting cavity fault recovery system at the Spallation Neutron Source[C]//Proceedings of the Workshop on Utilisation and Reliability of High Power Proton Accelerators. 2007: 170
    [7] Biarrotte J L, Uriot D. Dynamic compensation of an rf cavity failure in a superconducting linac[J]. Physical Review Special Topics—Accelerators and Beams, 2008, 11: 072803. doi: 10.1103/PhysRevSTAB.11.072803
    [8] 赵世亮. 基于FPGA硬核的IOC应用展望[D]. 上海: 中国科学院上海应用物理研究所, 2009: 23-26.

    Zhao Shiliang. Prospect on the Application of FPGA embedded hard core technology in IOC[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2009: 23-26
    [9] Xilinx. Kintex-7 FPGA KC705[EB/OL]. https://china.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html.
    [10] Wangler T P. RF linear accelerators[M]. Weinheim: Wiley-VCH, 2008.
    [11] Li Zhihui, Cheng Peng, Geng Huiping, et al. Physics design of an accelerator for an accelerator-driven subcritical system[J]. Physical Review Special Topics—Accelerators and Beams, 2013, 16: 080101. doi: 10.1103/PhysRevSTAB.16.080101
    [12] Xilinx. PetaLinux tools documentation reference guide[EB/OL]. 2019-10-30. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1144-petalinux-tools-reference-guide.pdf.
    [13] Xilinx. PetaLinux tools documentation command line reference guide[EB/OL]. 2019-10-30. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1157-petalinux-tools-command-line-guide.pdf.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  965
  • HTML全文浏览量:  248
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16
  • 修回日期:  2021-01-26
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回