留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向5G多波束应用的紧凑宽带Rotman透镜设计

付宇璠 周东方 张毅 吕大龙 张德伟 许飞

付宇璠, 周东方, 张毅, 等. 面向5G多波束应用的紧凑宽带Rotman透镜设计[J]. 强激光与粒子束, 2021, 33: 033006. doi: 10.11884/HPLPB202133.200291
引用本文: 付宇璠, 周东方, 张毅, 等. 面向5G多波束应用的紧凑宽带Rotman透镜设计[J]. 强激光与粒子束, 2021, 33: 033006. doi: 10.11884/HPLPB202133.200291
Fu Yufan, Zhou Dongfang, Zhang Yi, et al. Design of compact wideband Rotman lens for 5G multibeam application[J]. High Power Laser and Particle Beams, 2021, 33: 033006. doi: 10.11884/HPLPB202133.200291
Citation: Fu Yufan, Zhou Dongfang, Zhang Yi, et al. Design of compact wideband Rotman lens for 5G multibeam application[J]. High Power Laser and Particle Beams, 2021, 33: 033006. doi: 10.11884/HPLPB202133.200291

面向5G多波束应用的紧凑宽带Rotman透镜设计

doi: 10.11884/HPLPB202133.200291
基金项目: 核高基重大专项(2013ZX01010003-004)
详细信息
    作者简介:

    付宇璠(1993—),男,硕士研究生,从事毫米波多波束天线阵列研究;fuyufandeyouxiang@163.com

  • 中图分类号: TN822

Design of compact wideband Rotman lens for 5G multibeam application

  • 摘要: 提出了一种基于等光程差原理设计的紧凑宽带Rotman透镜波束赋形网络,用于5G毫米波通信的天线阵列多波束实现。首先,详细介绍了Rotman透镜的基本原理;然后,利用二等分功分器替代传统的单端口馈电模式,产生高定向波束,降低相邻端口处的能量损失以及透镜内部能量的散射;最后利用切比雪夫多枝节匹配变换器,优化原有的锥形阵列输出端口,在保证宽频带的条件下,缩短原有匹配端口尺寸,使得透镜整体尺寸减少20%,实现了Rotman透镜的紧凑性。改进模型的实测结果表明,该透镜工作频带为16.5~33.8 GHz,其中在17.2~32 GHz,S11优于15 dB,扫描角度为±30°。该透镜结构简单紧凑,能够有效地为相邻阵元提供稳定的相位差信号,很好地实现5G毫米波阵列多波束的目标。
  • 图  1  Rotman透镜几何结构

    Figure  1.  Rotman lens geometry

    图  2  Rotman透镜的结构布局对比

    Figure  2.  Structural layout comparison of Rotman lenses

    图  3  Rotman透镜的结构设计

    Figure  3.  Layouts of Rotman lens

    图  4  表面电流分布

    Figure  4.  Comparison of distribution of the electric current between traditional lens and proposed Rotman lens

    图  5  提出模型与原始模型的S11参数

    Figure  5.  S11 parameters of the proposed model and the original model

    图  6  Rotman透镜实物图

    Figure  6.  Photo of the Rotman lens

    图  7  S11参数的仿真与测量结果

    Figure  7.  Simulation and measurement results of S11 parameters

    图  8  S参数相位

    Figure  8.  S-parameters of the phase

    图  9  Rotman透镜馈电时阵列辐射方向图

    Figure  9.  Radiation patterns of antenna array fed by the Rotman lens

    表  1  切比雪夫多节匹配参数

    Table  1.   Parameters of Chebyshev multi-section matching

    Z1Z2/ΩZ3Z4
    23.7128.9937.8146.23
    下载: 导出CSV
  • [1] Inoue T. 5G standards progress and challenges[C]//Proceedings of the 2017 IEEE Radio and Wireless Symposium (RWS). Phoenix, AZ, USA: IEEE, 2017: 1-4.
    [2] Hong Wonbin, Baek K H, Lee Y, et al. Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices[J]. IEEE Communications Magazine, 2014, 52(9): 63-69. doi: 10.1109/MCOM.2014.6894454
    [3] Samadi Taheri M M, Abdipour A, Zhang Shuai, et al. Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4042-4046. doi: 10.1109/TVT.2019.2899178
    [4] Hong Wonbin. Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift[J]. IEEE Microwave Magazine, 2017, 18(7): 86-102. doi: 10.1109/MMM.2017.2740538
    [5] Hussain R, Alreshaid A T, Podilchak S K, et al. Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets[J]. IET Microwaves, Antennas & Propagation, 2017, 11(2): 271-279.
    [6] Hong Wei, Jiang Zhihao, Yu Chao, et al. Multibeam antenna technologies for 5G wireless communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6231-6249. doi: 10.1109/TAP.2017.2712819
    [7] Pourahmadazar J, Karimian R, Denidni T. 8-12-GHz beam-shaping/steering phased antenna array system using SIW fed nonplanar director Yagi-Uda antenna[C]//Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI). Fajardo, Puerto Rico: IEEE, 2016: 1145-1146.
    [8] Cho Y J, Suk G Y, Kim B, et al. RF lens-embedded antenna array for mmWave MIMO: design and performance[J]. IEEE Communications Magazine, 2018, 56(7): 42-48. doi: 10.1109/MCOM.2018.1701019
    [9] Dai T K V, Nguyen T, Kilic O. A compact microstrip Rotman lens design[C]//Proceedings of the 2017 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). Boulder, CO, USA: IEEE, 2017: 1-2.
    [10] Hansen R C. Design trades for Rotman lenses[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(4): 464-472. doi: 10.1109/8.81458
    [11] Ershadi S E, Keshtkar A, Bayat A, et al. Rotman lens design and optimization for 5G applications[J]. International Journal of Microwave and Wireless Technologies, 2018, 10(9): 1048-1057. doi: 10.1017/S1759078718000934
    [12] 康行健. 天线原理与设计[M]. 北京: 北京理工大学出版社, 1993: 327-328.

    Kang Xingjian. The theory and design of antenna[M]. Beijing: Beijing Institute of Technology Press, 1993: 327-328
    [13] Tolin E, Litschke O, Vipiana F. Phase management for extended scan range antenna arrays based on Rotman lens[C]//Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018). London, UK: IET, 2018: 5-8.
    [14] Musa L, Smith M S. Microstrip port design and sidewall absorption for printed Rotman lenses[J]. IEE Proceedings, Part H—Microwaves, Antennas and Propagation, 1989, 136(1): 53-58.
    [15] Satitchantrakul T, Chudpooti N, Akkaraekthalin P, et al. An implementation of compact quarter-wave-like-transformers using multi-section transmission lines[J]. Radioengineering, 2018, 27(1): 101-109. doi: 10.13164/re.2018.0101
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1860
  • HTML全文浏览量:  383
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-22
  • 修回日期:  2021-01-23
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回