留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间环境地面模拟装置扫描磁铁振动

喻九维 杨雅清 吕明邦 陈文军 郑亚军 许小伟 陆海娇 潘永祥

喻九维, 杨雅清, 吕明邦, 等. 空间环境地面模拟装置扫描磁铁振动[J]. 强激光与粒子束, 2021, 33: 054001. doi: 10.11884/HPLPB202133.200311
引用本文: 喻九维, 杨雅清, 吕明邦, 等. 空间环境地面模拟装置扫描磁铁振动[J]. 强激光与粒子束, 2021, 33: 054001. doi: 10.11884/HPLPB202133.200311
Yu Jiuwei, Yang Yaqing, Lü Minbang, et al. Vibration of scanning magnet for space environment simulation and research infrastructure[J]. High Power Laser and Particle Beams, 2021, 33: 054001. doi: 10.11884/HPLPB202133.200311
Citation: Yu Jiuwei, Yang Yaqing, Lü Minbang, et al. Vibration of scanning magnet for space environment simulation and research infrastructure[J]. High Power Laser and Particle Beams, 2021, 33: 054001. doi: 10.11884/HPLPB202133.200311

空间环境地面模拟装置扫描磁铁振动

doi: 10.11884/HPLPB202133.200311
基金项目: 国家十二五重大科技基础设施-空间环境地面模拟装置(SESRI)
详细信息
    作者简介:

    喻九维(1993—),男,硕士,主要从事机械设计与振动噪声方面研究

  • 中图分类号: O329

Vibration of scanning magnet for space environment simulation and research infrastructure

  • 摘要: 研究了近代物理研究所为哈尔滨工业大学(HIT)空间环境地面模拟装置(SESRI)研制的扫描磁铁的振动,通过试验,使用激光位移传感器采集扫描磁铁上关键点的振幅,对比振幅分析影响振动的因素。试验数据显示,当电流为450 A、频率小于140 Hz时,振动平缓;磁铁整体振动随输入电流频率升高与电流增大而增强,电流频率为磁铁振动的主要影响因素;磁铁内带阻尼性材料部分的振幅明显小于其他部分。同时哈尔滨工业大学扫描磁铁采用的线圈铁芯浇筑一体结构设计,振动明显减小。结论证明磁铁机构与工艺的合理设计能有效减振。
  • 图  1  线圈自激励力方向示意

    Figure  1.  Directions of coils’ self-excited force

    图  2  测试仪器与数据采集界面示意

    Figure  2.  Interface diagrams of test instrument and data acquisition

    图  3  测试点示意图

    Figure  3.  Test point diagram (1-angle iron in front of core; 2-the coils side; 3-outer side of the core; 4-coils briquetting)

    图  4  相邻A,B面总体位移变化折线

    Figure  4.  Broken lines for the total displacement variation of adjacent surfaces

    图  5  未通电时振幅折线图

    Figure  5.  Broken line diagrams of amplitude without electrification

    图  6  1~9组电流变化对比

    Figure  6.  Comparison of current changes in groups 1~9

    图  7  9~15组频率变化对比

    Figure  7.  Comparison of frequencies in groups 9~16

    图  8  测试点1~4振幅标准差对比

    Figure  8.  Contrast of test points 1~ 4 in standard deviation

    图  9  测试点1和测试点4振幅标准差对比

    Figure  9.  Contrast between test point 1 and test point 4 in standard deviation

  • [1] Jiang H P, Liu J L, Hao H F, et al. SESRI 300 MeV proton and heavy ion accelerator[J]. Journal of Physics: Conference Series, 2019, 1350: 012081. doi: 10.1088/1742-6596/1350/1/012081
    [2] 苏以蕴. 扫描磁铁的研制[J]. 核技术, 2000, 23(9):665-667. (Su Yiyun. The structural design and production of the scanning magnet[J]. Nuclear Techniques, 2000, 23(9): 665-667 doi: 10.3321/j.issn:0253-3219.2000.09.016
    [3] 刘建波, 李洪, 陈楠, 等. 地基振动对大型加速器对中影响[J]. 强激光与粒子束, 2010, 22(4):817-820. (Liu Jianbo, Li Hong, Chen Nan, et al. Alignment for large-scale accelerator after ground vibration[J]. High Power Laser and Particle Beams, 2010, 22(4): 817-820 doi: 10.3788/HPLPB20102204.0817
    [4] 卞文龙, 袁平, 马力祯, 等. CR超导二极磁铁线圈受力分析[J]. 中国物理C, 2008, 32(s1):11-14. (Bian Wenlong, Yuan Ping, Ma Lizhen, et al. Stress analysis of CR superferric magnet[J]. Chinese Physics C, 2008, 32(s1): 11-14
    [5] Al Shehab M, Jordan A, Lakovakis E, et al. Vibration measurement & simulation of magnet & girder in sesame[C]//Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation. 2018: 111-113.
    [6] Trombik P, Fleischer P, Vassiliou M F. Vibration isolation measures due to the high sensitive linear accelerator at the Paul Scherrer Institute[J]. MATEC Web of Conferences, 2015, 24: 06006. doi: 10.1051/matecconf/20152406006
    [7] Turner J L, Adolphsen C, Bowden G B, et al. Vibration studies of the Stanford Linear Accelerator[C]//Proceedings Particle Accelerator Conference. 1995: 665-667.
    [8] Liu Renhong, Zhang Junsong, Qu Huamin, et al. Vibration research of the AC dipole-girder system for CSNS/RCS[J]. Chinese Physics C, 2014, 38(6): 97-102.
    [9] 王之琢, 曹建社, 王梓豪, 等. 高能光源BPMS独立支架系统设计[J]. 强激光与粒子束, 2019, 31:095101. (Wang Zhizhuo, Cao Jianshe, Wang Zhihao, et al. Independent support system for beam position monitors in HEPS[J]. High Power Laser and Particle Beams, 2019, 31: 095101 doi: 10.11884/HPLPB201931.190072
    [10] Bu Lingshan, Zhao Zhentang, Yin Lixin, et al. Vibration damping of magnet girder assembly of Shanghai synchrotron radiation facility's storage ring[J]. High Power Laser and Particle Beams, 2008, 20(1): 127-130.
    [11] Le Breton R, Deleglise G, Allibe J, et al. Nanometer scale active ground motion isolator[J]. Sensors and Actuators A: Physical, 2013, 204: 97-106. doi: 10.1016/j.sna.2013.09.020
    [12] Riddone G, Schulte D, Mainaud-Durand H, et al. Technical specification for the CLIC two-beam module[C]//Proceedings of EPAC08. 2008: 607-609.
    [13] Montag C. Active stabilization of mechanical quadrupole vibrations for linear colliders[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 378(3): 369-375.
    [14] Fan Y, Tao F, Li Z, et al. Vibrational stability of a cryocooled double crystal monochromator at SSRF[C]//Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation. Paris: JACoW Publishing, 2018: 220-222.
    [15] 郑莉芳, 纪全, 王立, 等. 辐照对BESⅢ束流管支撑法兰材料断纹剪切性能影响的研究[J]. 核电子学与探测技术, 2007, 27(2):219-222. (Zheng Lifang, Ji Quan, Wang Li, et al. Irradiation effects on the shear property of supporting flange material of beam pipe in BESIII[J]. Nuclear Electronics & Detection Technology, 2007, 27(2): 219-222 doi: 10.3969/j.issn.0258-0934.2007.02.015
  • 加载中
图(9)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  233
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 修回日期:  2021-01-21
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回