留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁场2.5维时域间断有限元方法

侯毅然 王玉恒 王向晖 张杰 齐红新

侯毅然, 王玉恒, 王向晖, 等. 电磁场2.5维时域间断有限元方法[J]. 强激光与粒子束, 2021, 33: 073010. doi: 10.11884/HPLPB202133.210056
引用本文: 侯毅然, 王玉恒, 王向晖, 等. 电磁场2.5维时域间断有限元方法[J]. 强激光与粒子束, 2021, 33: 073010. doi: 10.11884/HPLPB202133.210056
Hou Yiran, Wang Yuheng, Wang Xianghui, et al. 2.5-D discontinuous Galerkin time-domain method for Maxwell equations[J]. High Power Laser and Particle Beams, 2021, 33: 073010. doi: 10.11884/HPLPB202133.210056
Citation: Hou Yiran, Wang Yuheng, Wang Xianghui, et al. 2.5-D discontinuous Galerkin time-domain method for Maxwell equations[J]. High Power Laser and Particle Beams, 2021, 33: 073010. doi: 10.11884/HPLPB202133.210056

电磁场2.5维时域间断有限元方法

doi: 10.11884/HPLPB202133.210056
基金项目: 国家自然科学基金项目(31600675)
详细信息
    作者简介:

    侯毅然(1996—),男,硕士研究生,主要从事计算电磁学研究

    通讯作者:

    齐红新(1974—),男,博士,主要从事计算电磁学研究

  • 中图分类号: O441.4

2.5-D discontinuous Galerkin time-domain method for Maxwell equations

  • 摘要: 介质沿空间固定方向均匀分布的结构在电磁导波器件中有十分广泛的应用,对这类器件的分析通常被称为2.5D电磁问题。利用器件在固定方向介质分布均匀的特点,将电磁场量沿该方向进行空间傅里叶变换,可以把对三维问题的分析转化为两维问题求解,从而极大地减小计算开销。针对传统基于差分的2.5D电磁场算法在弯曲形状逼近上有阶梯误差的缺陷,本文提出了基于三角形网格的2.5D时域间断有限元方法(DGTD),并用它模拟了电偶极子与光纤的耦合效率和光子晶体光纤的色散特性。与基于规则网格的2.5D差分方法进行对比。结果表明,文中建立的2.5D DGTD方法对弯曲形状的模拟更加逼真,计算内存占用最大减少10.4%,计算精度最大相差0.011%,计算时间缩短74.9%,计算效率提高。
  • 图  1  单模光纤模型

    Figure  1.  Single mode fiber model

    图  2  计算区域的网格划分

    Figure  2.  FDTD grid and DGTD grid

    图  3  偶极子极化方向不同,观察点处电场强度分量随时间的变化关系以及误差分析

    Figure  3.  Relationship between electric field intensity component with time in different polarization direction of dipole source

    图  4  光子晶体光纤横截面结构及特征参数示意图

    Figure  4.  Calculation window of photonic crystal fiber

    图  5  相同模型、不同算法、不同网格密度、基模色散曲线对比

    Figure  5.  Comparison of dispersion curves of the same model, different algorithms and different mesh densities

    表  1  两种算法消耗计算资源的比较

    Table  1.   Comparison of two algorithms consuming computing resources

    methodmesh${\Delta _t}/fs$memory/MBtime/s
    2.5D-FDTD 625 0.094 261.5 823
    2.5D-DGTD 432 0.013 227.4 217
    下载: 导出CSV

    表  2  不同算法的有效折射率

    Table  2.   Fundamental effective index of different algorithms

    methodmeshresultrelative error/%
    2.5D-FDTD211 6001.428 720.002 8
    52 9001.428 780.007 0
    13 2251.428 840.011 2
    2.5D-DGTD23 7201.428 690.000 7
    12 3681.428 710.002 1
    5 9721.428 710.002 1
    3D-full-vector finite difference[20]14 4001.428 68
    下载: 导出CSV

    表  3  两种算法消耗计算资源的比较

    Table  3.   Comparison of two algorithms consuming computing resources

    method$\Delta l/{\rm{um}}$mesh${\Delta _{ {\rm{t} },\max} }/{\rm{fs}}$memory/GBtime/s
    2.5D-FDTD0.047 92211 6000.1121.422 812
    0.095 6552 9000.2250.343 083
    0.191 67132 250.4510.07432
    2.5D-DGTD0.106 6723 7200.2800.8745 732
    0.144 1412 3680.2850.4583 225
    0.207 795 9720.3600.2291 394
    下载: 导出CSV
  • [1] Ibanescu M, Fink Y, Fan S, et al. An all-dielectric coaxial waveguide[J]. Science, 2000, 289(5478): 415-419. doi: 10.1126/science.289.5478.415
    [2] Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362. doi: 10.1126/science.1079280
    [3] Moghaddam M, Chew W C, Anderson B, et al. Computation of transient electromagnetic waves in inhomogeneous media[J]. Radio Science, 2016, 26(1): 265-273.
    [4] Moghaddam M, Chew W C, Anderson B, et al. Computation of transient electromagnetic waves in inhomogeneous media[J]. Radio Science, 1991, 26(1): 265-273. doi: 10.1029/90RS00924
    [5] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas & Propagation, 1966, 14(5): 302-307.
    [6] Tang Zibin, Liu Qing Huo. The 2.5D FDTD and Fourier PSTD methods and applications[J]. Microwave & Optical Technology Letters, 2003, 36(6): 430-436.
    [7] Belli K, Rappaport C M, Zhan H, et al. Effectiveness of 2-D and 2.5-D FDTD ground-penetrating radar modeling for bridge-deck deterioration evaluated by 3-D FDTD[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(11): 3656-3663.
    [8] Namiki T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(10): 2003-2007. doi: 10.1109/22.795075
    [9] 刘宗信, 陈亦望, 徐鑫, 等. 三维周期结构弱无条件稳定时域有限差分算法[J]. 强激光与粒子束, 2012, 24(11):2687-2692. (Liu Zongxin, Chen Yiwang, Xu Xin, et al. Weakly conditionally stable 3-D FDTD method for periodic structures[J]. High Power Laser and Particle Beams, 2012, 24(11): 2687-2692 doi: 10.3788/HPLPB20122411.2687
    [10] Volakis J L, Chatterjee A, Kempel L C. Finite element method electromagnetics : Antennas, microwave circuits, and scattering applications[M]. Piscataway: IEEE Press, 1998.
    [11] Kong F N, Johnstad S E, Røsten T, et al. A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media[J]. Geophysics, 2008, 73(1): 9-19.
    [12] Ou Yangxin, David P, Chen Y. Fourier finite element modeling of light emission in waveguides: 2.5-dimensional FEM approach[J]. Optics express, 2015, 23(23): 30259-30269. doi: 10.1364/OE.23.030259
    [13] Ainsworth M. Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods[J]. Journal of Computational Physics, 2008, 198(1): 106-130.
    [14] Hu F Q, Hussaini M Y, Rasetarinera P. An analysis of the discontinuous Galerkin method for wave propagation problems[J]. Journal of Computational Physics, 1999, 151(2): 921-946. doi: 10.1006/jcph.1999.6227
    [15] Hesthaven J S, Warburton T. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem[J]. Philosophical Transactions, 2004, 362(1816): 493-524. doi: 10.1098/rsta.2003.1332
    [16] Kennedy C A, Carpenter M H, Lewis R M. Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations[J]. Applied Numerical Mathematics, 2000, 35(3): 177-219. doi: 10.1016/S0168-9274(99)00141-5
    [17] Chen Geng, Zhao Lei, Yu Wenhua, et al. A general scheme for the discontinuous Galerkin time-domain modeling and S-parameter extraction of inhomogeneous waveports[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(4): 1701-1712. doi: 10.1109/TMTT.2017.2785800
    [18] Almokhtar M, Fujiwara M, Takashima H, et al. Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices[J]. Optics Express, 2014, 22(17): 20045-20059. doi: 10.1364/OE.22.020045
    [19] 栗岩锋, 刘博文, 王子涵, 等. 光子晶体光纤色散的有限差分法研究[J]. 中国激光, 2004, 31(10):1257-1260. (Li Yanfeng, Liu Bowen, Wang Zihan, et al. Finite difference analysis of dispersion properties of photonic crystal fibers[J]. Chinese Journal of Lasers, 2004, 31(10): 1257-1260 doi: 10.3321/j.issn:0258-7025.2004.10.023
    [20] Zhu Zhaoming, Thomas G B. Full-vectorial finite-difference analysis of microstructured optical fibers[J]. Optics express, 2002, 10(17): 853-864. doi: 10.1364/OE.10.000853
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1167
  • HTML全文浏览量:  356
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-04-06
  • 网络出版日期:  2021-05-22
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回