留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷雾冷却的热逆转现象及其传热强化特性

龙文俊 郑磊 赵锐 程文龙

龙文俊, 郑磊, 赵锐, 等. 喷雾冷却的热逆转现象及其传热强化特性[J]. 强激光与粒子束, 2021, 33: 101001. doi: 10.11884/HPLPB202133.210101
引用本文: 龙文俊, 郑磊, 赵锐, 等. 喷雾冷却的热逆转现象及其传热强化特性[J]. 强激光与粒子束, 2021, 33: 101001. doi: 10.11884/HPLPB202133.210101
Long Wenjun, Zheng Lei, Zhao Rui, et al. Heat reversal phenomenon of spray cooling and its heat transfer enhancement characteristics[J]. High Power Laser and Particle Beams, 2021, 33: 101001. doi: 10.11884/HPLPB202133.210101
Citation: Long Wenjun, Zheng Lei, Zhao Rui, et al. Heat reversal phenomenon of spray cooling and its heat transfer enhancement characteristics[J]. High Power Laser and Particle Beams, 2021, 33: 101001. doi: 10.11884/HPLPB202133.210101

喷雾冷却的热逆转现象及其传热强化特性

doi: 10.11884/HPLPB202133.210101
基金项目: 国家自然科学基金项目(51876198)
详细信息
    作者简介:

    龙文俊,lwj00@mail.ustc.edu.cn

    通讯作者:

    程文龙,wlcheng515@163.com

  • 中图分类号: TB66

Heat reversal phenomenon of spray cooling and its heat transfer enhancement characteristics

  • 摘要: 针对高热流密度激光介质散热问题,利用实验方法研究了以十二烷基硫酸钠水溶液作为工质的喷雾冷却传热特性。结果表明,在特定的热流密度范围内,随着热流密度的增加,加热面温度不升反降,称之为热逆转。热逆转现象对对流换热系数的提升作用可高达94.0%,提升大小与热流密度有关。热逆转对应的热流密度区间为80~130 W/cm2,与浓度关系较小。热逆转现象与实验过程有关,该现象仅在热流密度逐渐升高的过程中出现,降低和任调热流密度过程中未发现此现象。热逆转具体原因还有待研究。
  • 图  1  喷雾冷却过程中的物理模型

    Figure  1.  Physical model of spray cooling

    图  2  实验系统

    Figure  2.  Schematic diagram of experimental system

    图  3  热流密度与散热面温度关系

    Figure  3.  Relationship between heat flux and surface temperature

    图  4  换热系数比随热流密度变化

    Figure  4.  Heat transfer coefficient ratio varies with heat flux

    图  5  热流密度逐渐上升、下降和无序时与表面温度的关系

    Figure  5.  Relationship between heat flux which is in creased, decreased or unordered, and surface temperature

  • [1] 杨春光, 张浩, 刘军. 开式单喷嘴喷雾冷却均匀性实验研究[J]. 强激光与粒子束, 2020, 32:071004. (Yang Chunguang, Zhang Hao, Liu Jun. Experimental investigation on cooling uniformity of open single nozzle spray[J]. High Power Laser and Particle Beams, 2020, 32: 071004
    [2] 张雨薇, 刘妮, 王可. 喷雾冷却换热机理研究进展[J]. 电子元件与材料, 2016, 35(11):1-5. (Zhang Yuwei, Liu Ni, Wang Ke. Research progress on heat transfer mechanism of spray cooling[J]. Electronic Component and Materials, 2016, 35(11): 1-5
    [3] 张雨薇, 刘妮. 含有添加剂的喷雾冷却研究进展[J]. 电子元件与材料, 2016, 35(1):18-22. (Zhang Yuwei, Liu Ni. Research progress of spray cooling with surfactant[J]. Electronic Component and Materials, 2016, 35(1): 18-22
    [4] Hendricks T J, Krishnan S, Choi C, et al. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3357-3365.
    [5] 程文龙, 赵锐, 韩丰云, 等. 封闭式喷雾冷却传热特性的实验与理论研究[J]. 宇航学报, 2010, 31(6):1666-1671. (Cheng Wenlong, Zhao Rui, Han Fengyun, et al. Experimental and theoretical analysis of heat transfer characteristics of spray cooling in a closed loop[J]. Journal of Astronautics, 2010, 31(6): 1666-1671 doi: 10.3873/j.issn.1000-1328.2010.06.026
    [6] Gradeck M, Ouattara A, Maillet D, et al. Heat transfer associated to a hot surface quenched by a jet of oil-in-water emulsion[J]. Experimental Thermal and Fluid Science, 2011, 35(5): 841-847. doi: 10.1016/j.expthermflusci.2010.07.002
    [7] Mohapatra S S, Ravikumar S V, Verma A, et al. Experimental investigation of effect of a surfactant to increase cooling of hot steel plates by a water jet[J]. Journal Heat Transfer, 2013, 135: 032101. doi: 10.1115/1.4007878
    [8] Bhatt N H, Pati A R, Kumar A, et al. High mass flux spray cooling with additives of low specific heat and surface tension: a novel process to enhance the heat removal rate[J]. Applied Thermal Engineering, 2017, 120: 537-548. doi: 10.1016/j.applthermaleng.2017.03.137
    [9] Cheng Wenlong, Xie Biao, Han Fengyun, et al. An experimental investigation of heat transfer enhancement by addition of high-alcohol surfactant (HAS) and dissolving salt additive (DSA) in spray cooling[J]. Experimental Thermal and Fluid Science, 2013, 45: 198-202. doi: 10.1016/j.expthermflusci.2012.11.005
    [10] Horacek B, Kiger K T, Kim J. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(8): 1425-1438. doi: 10.1016/j.ijheatmasstransfer.2004.10.026
    [11] Nguyen C T, Roy G, Gauthier C, et al. Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system[J]. Applied Thermal Engineering, 2007, 27(8/9): 1501-1506.
    [12] Mohapatra S S, Ravikumar S V, Andhare S, et al. Experimental study and optimization of air atomized spray with surfactant added water to produce high cooling rate[J]. Journal of Enhanced Heat Transfer, 2012, 19(5): 397-408. doi: 10.1615/JEnhHeatTransf.2012004285
    [13] Sanjeev A. Computational study of surfactant-induced modification of droplet impact dynamics and heat transfer on hydrophobic and hydrophilic surfaces[D]. Cincinnati: University of Cincinnati, 2008.
    [14] 李依一, 程文龙, 赵锐. 分散剂对纳米流体喷雾冷却传热特性影响的试验研究[J]. 流体机械, 2020, 48(12):58-61, 79. (Li Yiyi, Cheng Wenlong, Zhao Rui. Experimental study on the effect of dispersants on the spray cooling heat transfer of nanofluid[J]. Fluid Machinery, 2020, 48(12): 58-61, 79 doi: 10.3969/j.issn.1005-0329.2020.12.010
    [15] 周定伟, 马重芳, 刘登瀛. 强润湿性液体起沸状态的实验及理论研究[J]. 应用基础与工程科学学报, 2001, 9(1):68-73. (Zhou Dingwei, Ma Chongfang, Liu Dengying. Experimental and theoretical study on incipient boiling condition of highly-wetting liquids[J]. Journal of Basic Science and Engineering, 2001, 9(1): 68-73 doi: 10.3969/j.issn.1005-0930.2001.01.010
    [16] Bar-Cohen A, Simon T W. Wall superheat excursions in the boiling incipience of dielectric fluids[J]. Heat Transfer Engineering, 1988, 9(3): 19-31. doi: 10.1080/01457638808939668
    [17] 纪献兵, 徐进良. 表面活性剂对池沸腾换热的影响[J]. 工程热物理学报, 2008, 29(12):2049-2052. (Ji Xianbing, Xu Jinliang. Effect of surfactant additive on pool boiling heat transfer[J]. Journal of Engineering Thermophysics, 2008, 29(12): 2049-2052 doi: 10.3321/j.issn:0253-231X.2008.12.018
    [18] 王磊. 阴离子型Gemini表面活性剂的合成及性能研究[D]. 西安: 西安工程大学, 2012.

    Wang Lei. Study on synthesis and property of anionic Gemini surfactants[D]. Xi’an: Xi'an Polytechnic University, 2012
    [19] 王磊, 陶毓伽, 淮秀兰, 等. 添加表面活性剂的喷雾冷却实验研究[J]. 激光与光电子学进展, 2009, 46(10):92-95. (Wang Lei, Tao Yujia, Huai Xiulan, et al. Experimental investigation of surfactant effects in spray cooling[J]. Laser & Optoelectronics Progress, 2009, 46(10): 92-95
  • 加载中
图(5)
计量
  • 文章访问数:  791
  • HTML全文浏览量:  346
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-09-15
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回