留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用超快电子探针诊断受激拉曼散射静电波的数值模拟

蓝梓月 潘凯强 杨冬 李志超 龚韬 李三伟 蒋小华 李琦 郭亮 杨家敏 江少恩

蓝梓月, 潘凯强, 杨冬, 等. 利用超快电子探针诊断受激拉曼散射静电波的数值模拟[J]. 强激光与粒子束, 2021, 33: 112001. doi: 10.11884/HPLPB202133.210104
引用本文: 蓝梓月, 潘凯强, 杨冬, 等. 利用超快电子探针诊断受激拉曼散射静电波的数值模拟[J]. 强激光与粒子束, 2021, 33: 112001. doi: 10.11884/HPLPB202133.210104
Lan Ziyue, Pan Kaiqiang, Yang Dong, et al. Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe[J]. High Power Laser and Particle Beams, 2021, 33: 112001. doi: 10.11884/HPLPB202133.210104
Citation: Lan Ziyue, Pan Kaiqiang, Yang Dong, et al. Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe[J]. High Power Laser and Particle Beams, 2021, 33: 112001. doi: 10.11884/HPLPB202133.210104

利用超快电子探针诊断受激拉曼散射静电波的数值模拟

doi: 10.11884/HPLPB202133.210104
基金项目: 国家自然科学基金项目(11575035,11705180)
详细信息
    作者简介:

    蓝梓月,ziyuelan@mail.ustc.edu.cn

    通讯作者:

    江少恩,jiangshn@vip.sina.com

  • 中图分类号: O534

Numerical simulation on diagnosis of stimulated Raman scattered electrostatic wave using relativistic electron probe

  • 摘要: 利用二维粒子模拟程序EPOCH验证了超快电子束探针诊断受激拉曼散射产生的静电波的可行性。结果表明,电子束探针穿过静电波电场后会在电子束探针的横向上产生密度调制,密度调制呈周期性分布且沿静电波的传播方向移动,密度调制的波数对应静电波的波数且移动速度对应静电波的相速度,因此特定条件下可用于反推电子的温度、密度等信息。在诊断静电波的过程中,电子束探针的束长必须小于静电波的波长或者诊断设备的曝光时间必须小于静电波的周期。本研究提供了一种新型的直接诊断静电波和电子温度、密度的方法,对于推动受激拉曼散射等激光等离子体不稳定性的实验研究具有重要意义。
  • 图  1  不同时刻背景等离子体密度扰动及电子束探针密度分布

    Figure  1.  Background plasma density disturbance and electron beam probe density distribution at different moments

    图  2  电子束探针密度扰动细节

    Figure  2.  Details of electron beam probe density modulation

    图  3  静电波一维空间分布及电场与密度扰动的波数谱对比

    Figure  3.   Electrostatic wave one-dimensional spatial distribution and comparison of wavenumber spectrum of electric field and density modulation

    图  4  电子束探针密度时空演化、时间积分和波数谱分布

    Figure  4.  Spatiotemporal evolution, time integral and wavenumber spectrum of electron beam probe density

  • [1] 张钧, 常铁强. 激光核聚变靶物理基础[M]. 北京: 国防工业出版社, 2004: 40-41

    Zhang Jun, Chang Tieqiang. Fundaments of the target physics for laser fusion[M]. Beijing: National Defense Industry Press, 2004: 40-41
    [2] Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. The Physics of Fluids, 1975, 18(8): 1002-1016. doi: 10.1063/1.861248
    [3] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [4] Hinkel D E, Callahan D A, Meezan N B, et al. Analyses of laser-plasma interactions in NIF ignition emulator designs[J]. Journal of Physics:Conference Series, 2010, 244: 022019. doi: 10.1088/1742-6596/244/2/022019
    [5] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [6] Baldis H S, Campbell E M, Kruer W L. Physics of laser plasmas[M]. New York: North-Holland, 1991.
    [7] 王传珂, 蒋小华, 王哲斌, 等. 神光II激光装置的全口径背向散射测量系统[J]. 强激光与粒子束, 2010, 22(8):1896-1900. (Wang Chuanke, Jiang Xiaohua, Wang Zhebin, et al. Full-aperture backscatter station on Shenguang-II Laser Facility[J]. High Power Laser and Particle Beams, 2010, 22(8): 1896-1900 doi: 10.3788/HPLPB20102208.1896
    [8] MacGowan B J, Afeyan B B, Back C A, et al. Laser-plasma interactions in ignition-scale hohlraum plasmas[J]. Physics of Plasmas, 1996, 3(5): 2029-2040. doi: 10.1063/1.872000
    [9] 王传珂, 蒋小华, 刘慎业, 等. 2ns, 351 nm激光黑腔靶受激Raman散射实验研究[J]. 强激光与粒子束, 2006, 18(7):1113-1116. (Wang Chuanke, Jiang Xiaohua, Liu Shenye, et al. Stimulated Raman scattering from interaction of 2 ns, 351 nm laser with hohlraum[J]. High Power Laser and Particle Beams, 2006, 18(7): 1113-1116
    [10] 郝亮, 刘占军, 胡晓燕, 等. 黑腔等离子体中SRS与SBS过程的散射光谱分析[J]. 强激光与粒子束, 2015, 27:032004. (Hao Liang, Liu Zhanjun, Hu Xiaoyan, et al. Analysis of backscattered light spectra of SRS and SBS in hohlraum plasma[J]. High Power Laser and Particle Beams, 2015, 27: 032004 doi: 10.11884/HPLPB201527.032004
    [11] Glenzer S H, Back C A, Estabrook K G, et al. Observation of two ion-acoustic waves in a two-species laser-produced plasma with Thomson scattering[J]. Physical Review Letters, 1996, 77(8): 1496-1499. doi: 10.1103/PhysRevLett.77.1496
    [12] Glenzer S H, Back C A, Suter L J, et al. Thomson scattering from inertial-confinement-fusion hohlraum plasmas[J]. Physical Review Letters, 1997, 79(7): 1277-1280. doi: 10.1103/PhysRevLett.79.1277
    [13] Glenzer S H, Roznus W, MacGowan B J, et al. Thomson scattering from high-Z laser-produced plasmas[J]. Physical Review Letters, 1999, 82(1): 97-100. doi: 10.1103/PhysRevLett.82.97
    [14] 李志超, 赵航, 龚韬, 等. 激光惯性约束聚变中光学汤姆逊散射研究进展[J]. 强激光与粒子束, 2020, 32:092004. (Li Zhichao, Zhao Hang, Gong Tao, et al. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 092004
    [15] Kline J L, Montgomery D S, Bezzerides B, et al. Observation of a transition from fluid to kinetic nonlinearities for Langmuir waves driven by stimulated Raman backscatter[J]. Physical Review Letters, 2005, 94: 175003. doi: 10.1103/PhysRevLett.94.175003
    [16] Rousseaux C, Gremillet L, Casanova M, et al. Transient development of backward stimulated Raman and Brillouin scattering on a picosecond time scale measured by subpicosecond Thomson diagnostic[J]. Physical Review Letters, 2006, 97: 015001. doi: 10.1103/PhysRevLett.97.015001
    [17] Zhang C J, Hua J F, Xu X L, et al. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe[J]. Scientific Reports, 2016, 6: 29485. doi: 10.1038/srep29485
    [18] Li C K, Séguin F H, Rygg J R, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 2008, 100: 225001. doi: 10.1103/PhysRevLett.100.225001
    [19] 张超杰. 基于超快电子探针的等离子体尾波场成像研究[D]. 北京: 清华大学工程物理系, 2016

    Zhang Chaojie. Probing wakefield structures in plasma based accelerators using femtosecond relativistic electron probes[D]. Beijing: Department of Engineering Physics in Tsinghua University, 2016
    [20] Ward R, Sircombe N J. Fast particle Bremsstrahlung effects in the PIC code EPOCH: enhanced diagnostics for laser-solid interaction modelling[R]. University of Warwick, 2014.
  • 加载中
图(4)
计量
  • 文章访问数:  673
  • HTML全文浏览量:  326
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-11-05
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回