留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SI-GaAs材料的新型脉冲压缩二极管

屈光辉 汪雅馨 赵岚 徐鸣 贾婉丽 马丽 纪卫莉

屈光辉, 汪雅馨, 赵岚, 等. 基于SI-GaAs材料的新型脉冲压缩二极管[J]. 强激光与粒子束, 2021, 33: 105002. doi: 10.11884/HPLPB202133.210212
引用本文: 屈光辉, 汪雅馨, 赵岚, 等. 基于SI-GaAs材料的新型脉冲压缩二极管[J]. 强激光与粒子束, 2021, 33: 105002. doi: 10.11884/HPLPB202133.210212
Qu Guanghui, Wang Yaxin, Zhao Lan, et al. A novel pulse compression diode based on SI-GaAs material[J]. High Power Laser and Particle Beams, 2021, 33: 105002. doi: 10.11884/HPLPB202133.210212
Citation: Qu Guanghui, Wang Yaxin, Zhao Lan, et al. A novel pulse compression diode based on SI-GaAs material[J]. High Power Laser and Particle Beams, 2021, 33: 105002. doi: 10.11884/HPLPB202133.210212

基于SI-GaAs材料的新型脉冲压缩二极管

doi: 10.11884/HPLPB202133.210212
基金项目: 陕西省自然基金科学项目(2020JM-462);国家自然科学基金项目(51877177);陕西高校青年创新团队(21JP085,21JP088);陕西省教育厅科学研究计划服务地方项目(19JC032)
详细信息
    作者简介:

    屈光辉,qgh@xaut.edu.cn

  • 中图分类号: TN78

A novel pulse compression diode based on SI-GaAs material

  • 摘要: 针对快前沿高重频脉冲的应用需求,设计并研制了一种基于半绝缘砷化镓(SI-GaAs)材料的新型脉冲压缩二极管,通过实验对其压缩性能和重频运行能力进行了测试。实验结果表明,利用此开关能够将前级脉冲的上升沿压缩约270倍和脉宽压缩14倍;并在50 Ω负载上,获得脉冲幅度1.3 kV、上升沿约1.6 ns、脉宽40.59 ns的电脉冲,重复频率达1 kHz,总计运行47 min,触发约两百万次。为研究脉冲压缩二极管的工作原理,对其静态伏安特性进行测试。分析认为,在电压初步加载阶段,SI-GaAs材料内的电场增强型的俘获与离化机制导致耐压增强,二极管在实验过程中出现延迟击穿现象;逆向偶极畴效应产生牵引机制,引发快速上升的位移电流,进而导致反偏结雪崩击穿,二极管表现出瞬间负阻特性,在负载上输出高压纳秒电脉冲。新型脉冲压缩二极管无外加触发快脉冲的前级器件,自身可以维持一定时间的强烈雪崩击穿状态,因此具有体积小、生产成本低的优点,可用于制作小型化高重频的纳秒脉冲功率源。
  • 图  1  新型脉冲压缩二极管的结构图

    Figure  1.  Structural diagram of the new pulse compression diode

    图  2  脉冲压缩二极管的工作电路图

    Figure  2.  Operating circuit diagram of a pulse compression diode

    图  3  负载上压缩前后的输出波形

    Figure  3.  Output waveforms on load before and after compression

    图  4  重频为1 kHz时负载上的输出波形

    Figure  4.  Repetitive output waveforms on load (frequency is 1 kHz)

    图  5  二极管的伏安特性曲线

    Figure  5.  The volt-ampere curve of diode

    图  6  +du/dt加载阶段EL2俘获与离化机制示意图

    Figure  6.  Schematic diagram of EL2 trap and ionization during the +du/dt loading phase

    表  1  实验结果

    Table  1.   Results of experiments

    output resultsrise time/nspulse width/ns
    uncompressed output parameters404.51078
    compressed output parameters1.4875.66
    output parameters at 1 kHz1.640.59
    下载: 导出CSV
  • [1] 余岳辉, 梁琳. 脉冲功率器件及其应用[M]. 北京: 机械工业出版社, 2010.

    Yu Yuehui, Liang Lin. Pulsed power devices and their applications[M]. Beijing: Machine China Press, 2010
    [2] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005.

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [3] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003.

    Zeng Zhengzhong. Introduction of pulsed power technology[M]. Xi'an: Shaanxi Technology Press, 2003
    [4] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002
    [5] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016.

    Qiu Aici. Application of pulsed power technology[M]. Xi'an: Shaanxi Technology Press, 2016
    [6] 郑建毅, 何闻. 脉冲功率技术的研究现状和发展趋势综述[J]. 机电工程, 2008, 25(4):1-4. (Zheng Jianyi, He Wen. Review of research actuality and development directions of pulsed power technology[J]. Journal of Mechanical & Electrical Engineering, 2008, 25(4): 1-4 doi: 10.3969/j.issn.1001-4551.2008.04.001
    [7] 闫克平. 脉冲功率技术及工业应用[C]//第六届全国脉冲功率学术交流会. 2019.

    Yan Keping. Pulsed power technology and industry application[C]//The 6th Pulsed Power Conference. 2019
    [8] Bluhm H. Pulsed power system principles and applications[M]. Beijing: Tsinghua University Press, 2008.
    [9] 韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2006.

    Han Min, Zou Xiaobing, Zhang Guixin. Application of pulsed power technology[M]. Beijing: Tsinghua University Press, 2006
    [10] 江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(01):10-15. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(01): 10-15 doi: 10.3788/HPLPB20122401.0010
    [11] 张适昌, 严萍, 王珏. 民用脉冲功率源的进展与展望[J]. 高电压技术, 2009, 35(3):618-631. (Zhang Shichang, Yan Ping, Wang Jue. Development situation and trends of pulsed power sources for civil applications[J]. High Voltage Engineering, 2009, 35(3): 618-631
    [12] 梁勤金, 石小燕, 潘文武. 高压快速离化半导体开关及其脉冲压缩特性[J]. 强激光与粒子束, 2011, 23(8):2141-2144. (Liang Qinjin, Shi Xiaoyan, Pan Wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(8): 2141-2144 doi: 10.3788/HPLPB20112308.2141
    [13] 梁勤金. 固态高功率高重频脉冲源的研究与发展[J]. 电讯技术, 2019, 59(10):1227-1236. (Liang Qinjin. Research and development of solid state high power high repetition frequency pulse source[J]. Telecommunication Engineering, 2019, 59(10): 1227-1236 doi: 10.3969/j.issn.1001-893x.2019.10.020
    [14] 吴佳霖, 刘英坤. 高功率半导体开关器件DSRD的研究进展[J]. 微纳电子技术, 2015, 52(4):211-215. (Wu Jialin, Liu Yingkun. Research development of the high power semiconductor switching device DSRD[J]. Micronanoelectronic Technology, 2015, 52(4): 211-215
    [15] 石小燕, 梁勤金, 郑强林. 1kV/800kHz亚纳秒脉冲发生器设计[J]. 电讯技术, 2016, 56(9):1049-1052. (Shi Xiaoyan, Liang Qinjin, Zheng Qianglin. Design of a 1 kV/800 kHz sub-nanosecond pulse generator[J]. Telecommunication Engineering, 2016, 56(9): 1049-1052 doi: 10.3969/j.issn.1001-893x.2016.09.018
    [16] 赖雨辰, 谢彦召, 王海洋, 等. 基于DSRD的高重频固态脉冲源的研制[J]. 强激光与粒子束, 2020, 32:105002. (Lai Yuchen, Xie Yanzhao, Wang Haiyang, et al. Development of the high repetitive frequency solid-state pulse generator based on DSRD[J]. High Power Laser and Particle Beams, 2020, 32: 105002
    [17] 陈洪斌, 孟凡宝, 张运俭, 等. 利用DBD开关开展脉冲压缩技术研究[J]. 高电压技术, 2005(6):44-45,62. (Chen Hongbin, Meng Fanbao, Zhang Yunjian, et al. Research of the pulse compression technology using DBD switch[J]. High Voltage Engineering, 2005(6): 44-45,62 doi: 10.3969/j.issn.1003-6520.2005.06.016
    [18] 饶俊峰. 基于固态开关的重复频率脉冲功率源的脉冲调制技术及其应用[D]. 上海: 复旦大学, 2013.

    Rao Junfeng. Solid-state switch-based pulse modulation technique for repetitive frequency pulse power sources and its application[D]. Shanghai: Fudan University, 2013
    [19] 董守龙, 王艺麟, 曾伟荣, 等. 一种全固态多匝直线型变压器驱动源的研制[J]. 电工技术学报, 2020, 35(7):1584-1591. (Dong Shoulong, Wang Yilin, Zeng Weirong, et al. The development of all solid-state multi-turn linear transformer driver[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1584-1591
    [20] 屈光辉, 鲁霄月, 徐鸣, 等. 利用M-SI-M结构GaAs自击穿产生高压纳秒电脉冲[C]//第六届全国脉冲功率会议. 2019.

    Qu Guanghui, Lu Xiaoyue, Xu Ming, et al. High-voltage nanosecond electrical pulses generated by self-breakdown of GaAs using M-SI-M structures[C]//The 6th National Conference on Pulsed Power. 2019
    [21] 邹元爔. 化学原理在GaAs缺陷研究中的应用[J]. 稀有金属, 1987, 41(5):321-323. (Zou Yuanxi. Application of chemical principles in the study of GaAs defects[J]. Rare Metals, 1987, 41(5): 321-323
    [22] 徐波, 王占国, 万寿科, 等. EL2光淬灭过程中光电导增强现象原因新探[J]. 半导体学报, 1994, 15(5):322-328. (Xu Bo, Wang Zhanguo, Wan Shouke, et al. New explanation to EPC phenomenon in EL2 photoquenching[J]. Chinese Journal of Semiconductors, 1994, 15(5): 322-328 doi: 10.3321/j.issn:0253-4177.1994.05.005
    [23] 邹元爔, 汪光裕, 莫培根. 用物理化学方法鉴别砷化镓中最主要深能级EL2的本性[J]. 物理学进展, 1988, 8(4):54-85. (Zou Yuanxi, Wang Guangyu, Mo Peigen. Identification of the nature of the most dominant deep energy level EL2 in GaAs by physicochemical methods[J]. Progress in Physcis, 1988, 8(4): 54-85
    [24] Fang Z Q, Look D C. Excess dark current due to saw damage in semi-insulating GaAs[J]. Journal of Electronic Materials, 1993, 22(11): 1361-1363. doi: 10.1007/BF02817700
    [25] Blakemore J S, Dobrilla P. Factors affecting the spatial distribution of the principal midgap donor in semi-insulating gallium arsenide wafers[J]. Journal of Applied Physics, 1985, 58(1): 204-207. doi: 10.1063/1.336280
    [26] Zhu Z H, Weber JP, Wang S Y, et al. New measurement technique: cw electrooptic probing of electric fields[J]. Applied Physics Letters, 1986, 49(8): 432-434. doi: 10.1063/1.97636
    [27] Zhu Z H, Wang S, Pan C L, et al. New technique to detect the GaAs semi-insulating surface property-cw electro-optic probing[J]. Applied Physics Letters, 1987, 50(17): 1125-1127. doi: 10.1063/1.97937
    [28] 施卫, 田立强. 半绝缘GaAs光电导开关的击穿特性[J]. 半导体学报, 2004, 25(6):691-696. (Shi Wei, Tian Liqiang. Breakdown characteristics of semi-insulating GaAs photoconductive switch[J]. Journal of Semiconductors, 2004, 25(6): 691-696 doi: 10.3321/j.issn:0253-4177.2004.06.015
    [29] Webe E R, Ennen H, Kaufmann U, et al. Identification of AsGa antisites in plastically deformed gallium arsenide[J]. Journal of Applied Physics, 1982, 53(9): 6140-6143. doi: 10.1063/1.331577
    [30] Kowalski G, Collins S P, Moore M. Lattice relaxation and metastability of the EL2 defect in semi-insulating GaAs and low temperature GaAs[J]. Journal of Applied Physics, 2000, 87(8): 3663-3668. doi: 10.1063/1.372396
    [31] Schöll E, Instabilities in semiconductors including chaotic[J]. Phenomena Physica Scripta, 1989, 29(28): 152-156.
    [32] Henry C H, Lang D V. Nonradiative capture and recombination by multiphonon emission in GaAs and GaP[J]. Physical Review B, 1997, 15(2): 989-1016.
    [33] Piazza F, Christianen P C M, Maan JC. Real time imaging of propagating high field domains in semi-insulating GaAs[J]. Acta Physica Polonica A, 1995, 88(5): 865-868. doi: 10.12693/APhysPolA.88.865
    [34] Piazza F, Christianen P C M, Maan J C. Electric field dependent EL2 capture coefficient in semi-insulating GaAs obtained from propagating high field domains[J]. Applied Physics Letters, 1996, 69(13): 1909-1911. doi: 10.1063/1.117618
    [35] Piazza F, Christianen P C M, Maan J C. Propagating high-electric-field domains in semi-insulating GaAs: Experiment and theory[J]. Physical Review. B, 1997, 55(23): 15591-15600. doi: 10.1103/PhysRevB.55.15591
    [36] Neumann A. Slow domains in semi-insulating GaAs[J]. Applied Physics Reviews, 2001, 90(1): 1-26. doi: 10.1063/1.1377023
    [37] Gatos H C, Kaminska M, Parsey J M. Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2[J]. Applied Physics Letters, 1982, 41(10): 989-991. doi: 10.1063/1.93366
    [38] Gunn J B. Microwave oscillations of current in III-V semiconductors[J]. Solid-State Commun, 1963, 1(4): 88-91. doi: 10.1016/0038-1098(63)90041-3
    [39] Sze S M. Physics of semiconductor devices [M]. Quantum Electronics IEEE Journal of New York, 1981, 15(12): 1438-1438.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  784
  • HTML全文浏览量:  254
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-07-26
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回