留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌酸锂光学电场传感器温度稳定性改善研究

杨燕 谢树果 田雨墨 王铁凝 杨美玲

杨燕, 谢树果, 田雨墨, 等. 铌酸锂光学电场传感器温度稳定性改善研究[J]. 强激光与粒子束, 2021, 33: 123024. doi: 10.11884/HPLPB202133.210384
引用本文: 杨燕, 谢树果, 田雨墨, 等. 铌酸锂光学电场传感器温度稳定性改善研究[J]. 强激光与粒子束, 2021, 33: 123024. doi: 10.11884/HPLPB202133.210384
Yang Yan, Xie Shuguo, Tian Yumo, et al. Improvement of temperature stability of E-field sensor with LiNbO3 crystal[J]. High Power Laser and Particle Beams, 2021, 33: 123024. doi: 10.11884/HPLPB202133.210384
Citation: Yang Yan, Xie Shuguo, Tian Yumo, et al. Improvement of temperature stability of E-field sensor with LiNbO3 crystal[J]. High Power Laser and Particle Beams, 2021, 33: 123024. doi: 10.11884/HPLPB202133.210384

铌酸锂光学电场传感器温度稳定性改善研究

doi: 10.11884/HPLPB202133.210384
基金项目: 国家自然科学基金项目(61631002,61427803)
详细信息
    作者简介:

    杨 燕,yanzi@buaa.edu.cn

    通讯作者:

    谢树果,xieshuguo@buaa.edu.cn

  • 中图分类号: TN29

Improvement of temperature stability of E-field sensor with LiNbO3 crystal

  • 摘要: 铌酸锂晶体材料具有较高的电光系数和稳定的物理、化学性质,广泛应用在各种电场传感器中。但是,铌酸锂晶体折射率对温度较为敏感,在使用最大电光效应方向时,由于自然双折射的存在,晶体工作点随温度漂移,一方面导致传感器无法稳定工作,另一方面也影响了传感器的灵敏度和动态范围。为了消除这一影响,探头中将使用长度相等、主轴正交的两块铌酸锂晶体,一块作为传感晶体,一块作为补偿晶体。由于补偿晶体的存在,传感器的自然双折射得到很大程度的抑制,温度稳定性也得到了改善。经实验对比,补偿之后的传感器工作状态稳定性比未补偿的传感器得到大幅提升。
  • 图  1  光学电场传感器系统功能示意图

    Figure  1.  Schematic diagram of optical electric field sensor system

    图  2  铌酸锂晶体探头结构示意图

    Figure  2.  Structure diagram of LiNbO3 probe

    图  3  初始相位差随温度的变化

    Figure  3.  Variation of initial phase difference with temperature

    图  4  LiNbO3双晶体结构

    Figure  4.  Dual-crystl structure

    图  5  补偿后初始相位差随温度变化量的变化

    Figure  5.  Variation of initial phase difference with temperature

    图  6  验证实验配置

    Figure  6.  Experiment configuration

    图  7  实验连接图

    Figure  7.  Experimental hardware connection

    图  8  探头回光功率波动对比

    Figure  8.  Comparison of relative optical power of two probes

  • [1] Ding Feng, Zhang Ji. Analysis and design for VMS EMC based on MPC555[J]. World Electric Vehicle Journal, 2010, 4(4): 754-759. doi: 10.3390/wevj4040754
    [2] Krug F, Lewke B. Electromagnetic interference on large wind turbines[J]. Energies, 2009, 2(4): 1118-1129. doi: 10.3390/en20401118
    [3] Podbersic M, Matko V, Segula M. An EMI filter selection method based on spectrum of digital periodic signal[J]. Sensors, 2006, 6(3): 90-99. doi: 10.3390/s6030090
    [4] Sabath F, Mokole E L. Ultra-wideband, short-pulse electromagnetics 10[M]. New York: Springer, 2014.
    [5] Alexander M, Loh T H, Betancort A L. Measurement of electrically small antennas via optical fibre[C]//2009 Loughborough Antennas & Propagation Conference. 2009: 653-656.
    [6] Gutiérrez-Martínez C, Santos-Aguilar J, Morales-Díaz A. On the design of video-bandwidth electric field sensing systems using dielectric LiNbO3 electro-optic sensors and optical delays as signal carriers[J]. IEEE Sensors Journal, 2013, 13(11): 4196-4203. doi: 10.1109/JSEN.2013.2265169
    [7] Yang Qing, Sun Shangpeng, He Yanxiao, et al. Intense electric-field optical sensor for broad temperature-range applications based on a piecewise transfer function[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1648-1656. doi: 10.1109/TIE.2018.2831170
    [8] Togo H, Moreno-Dominguez D, Kukutsu N. Universal optical electric-field sensor covering frequencies from 10 to 100 GHz[C]//2011 41st European Microwave Conference. 2011: 930-933.
    [9] Togo H, Sasaki A, Hirata A, et al. Characterization of millimeter-wave antenna using photonic measurement techniques[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2004, 14(3): 290-297. doi: 10.1002/mmce.20012
    [10] Nagatsuma T, Togo H, Narahara K, et al. Recent progress in optical measurement of radio-wave signals from gigahertz to terahertz[C]//2004 IEEE International Topical Meeting on Microwave Photonics (IEEE Cat. No. 04EX859). 2004: 20-23.
    [11] Garzarella A, Qadri S B, Wieting T J, et al. Piezo-induced sensitivity enhancements in electro-optic field sensors[J]. Journal of Applied Physics, 2005, 98: 043113. doi: 10.1063/1.2030414
    [12] Garzarella A, Hinton R J, Qadri S B, et al. Intrinsic optical modulation mechanism in electro-optic crystals[J]. Applied Physics Letters, 2008, 92: 221111. doi: 10.1063/1.2940340
    [13] Yang Yan, Xie Shuguo, Dong Yakai, et al. A frequency recovering method for photonic under-sampling E-field measurement[J]. IEEE Sensors Journal, 2021, 21(12): 13495-13505. doi: 10.1109/JSEN.2021.3068003
    [14] Yang Yan, Xie Shuguo, Wang Tianheng, et al. Multi-frequency electric field measurement method for optical under-sampling system[J]. IEEE Sensors Journal, 2021, 21(20): 23024-23036. doi: 10.1109/JSEN.2021.3105275
    [15] Nikogosyan D N. Nonlinear optical crystals: a complete survey[M]. Berlin: Springer, 2005.
  • 加载中
图(8)
计量
  • 文章访问数:  798
  • HTML全文浏览量:  326
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-12-02
  • 网络出版日期:  2021-12-07
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回