留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机智能电磁攻防技术

王玉明 马立云 陈亚洲

王玉明, 马立云, 陈亚洲. 无人机智能电磁攻防技术[J]. 强激光与粒子束, 2021, 33: 123022. doi: 10.11884/HPLPB202133.210387
引用本文: 王玉明, 马立云, 陈亚洲. 无人机智能电磁攻防技术[J]. 强激光与粒子束, 2021, 33: 123022. doi: 10.11884/HPLPB202133.210387
Wang Yuming, Ma Liyun, Chen Yazhou. UAV intelligent electromagnetic attack and defense technology[J]. High Power Laser and Particle Beams, 2021, 33: 123022. doi: 10.11884/HPLPB202133.210387
Citation: Wang Yuming, Ma Liyun, Chen Yazhou. UAV intelligent electromagnetic attack and defense technology[J]. High Power Laser and Particle Beams, 2021, 33: 123022. doi: 10.11884/HPLPB202133.210387

无人机智能电磁攻防技术

doi: 10.11884/HPLPB202133.210387
基金项目: 国防基础科研计划项目(JCKYS2020 DC1);国防科技重点实验室基金项目(6142205190302)
详细信息
    作者简介:

    王玉明,ymking2006@163.com

    通讯作者:

    陈亚洲,chen_yazhou@sina.com

  • 中图分类号: TN972

UAV intelligent electromagnetic attack and defense technology

  • 摘要: 无人机在枯燥任务领域、恶劣环境任务领域和危险任务领域发挥巨大作用,由于其具有低成本、零伤亡、低费效比等特性,在现代战争中屡立战功。未来战争是智能化、信息化战争,人工智能在给无人机带来巨大变革的同时,系统运行的可靠性、安全性也越来越依赖于复杂电磁环境下信息的稳定传输与掌控。无人机在恶劣电磁环境下的生存能力、适应能力,乃至电磁制衡能力一定程度上引领信息化装备电磁攻防的发展趋势。综述无人机的电磁环境效应与电磁防护技术,阐述信息层面与能量层面的无人机电磁反制与电磁防护方法,以期从智能化角度实现无人机电磁攻防。
  • 图  1  无人机数据链射频前端损伤

    Figure  1.  UAV data link RF front-end damage

    图  2  某型导航接收机带内三源电磁干扰下效应模型曲面

    Figure  2.  Effects model surface of navigation receiver under in-band three-source electromagnetic interference

    图  3  无人机光电吊舱受扰

    Figure  3.  Images taken when the UAV optical pod is disturbed

    图  4  飞控系统气压计传感器数据错误

    Figure  4.  Air pressure sensor data error in flight control system

    图  5  飞控系统惯性测量装置数据错误

    Figure  5.  Flight control inertial measurement unit data error

    图  6  美军加装的部分强电磁脉冲防护加固模组

    Figure  6.  Part of the strong electromagnetic pulse protection and reinforcement module installed by the US Army

    图  7  无人机电磁威胁态势评估

    Figure  7.  UAV electromagnetic threat situation assessment

    表  1  国内外同类射频前端典型防护产品的性能对比

    Table  1.   Performance comparison of similar RF front-end protection products

    product namefrequency/GHzinsertion
    loss/dB
    power capacity/dBmleakage
    power/dBm
    CWpulse
    Mini-Circuits
    CLM83-2W
    0.3~8.2 0.5 32 11.5
    Aeroflex
    LM202802-Q-c-301
    2~8 1.4 50 60
    (pulse width 25 μs, duty cycle 5%)
    21
    Herotek
    LS0812PP100A
    8~12 2 50 60
    (pulse width 1ms, duty cycle 1%)
    13
    MACOM
    MADL-011014
    1~2 0.8 53 55
    (pulse width 3 ms, duty cycle 10%)
    19
    MACOM
    MADL-011015
    2~4 0.8 51 56
    (pulse width 100 μs, duty cycle 10%)
    16
    Qorvo
    TGL2927-SM
    2~4 0.6 54
    (pulse width 500 μs, duty cycle 15%)
    18
    1603HES1149-1 0.01~5 1 33 9
    HDL0118 1~18 2 30 50
    (pulse width 1 μs, duty cycle 0.1%)
    15
    XK29815005 8~18 2.5 33 53
    (pulse width 1 μs, duty cycle 1%)
    17
    short wave and ultrashort
    wave protection module
    (laboratory products)
    1×10−3~200 ×10−3 0.156 square wave tolerance amplitude 4 kV,pulse
    width 1 μs,leakage peak voltage 18.08 V,
    limiting voltage 8.83 V
    L-band protection module
    (laboratory products)
    1~2 0.8 53 55
    (pulse width 3ms, duty cycle 10%)
    20
    S-band protection module
    (laboratory products)
    2.5~3.5 0.84 51 60
    (pulse width 100μs, duty cycle 10%)
    14
    ultra-wideband protection module
    (laboratory products)
    1.5×10−3~2.5 0.8 63
    (double exponential waveform, pulse width 200ns,
    duty cycle 20%)
    22
    ultra-wideband protection module
    (laboratory products)
    2~8 1.2 60
    (double exponential waveform, pulse width 100ns,
    duty cycle 10%)
    30
    下载: 导出CSV
  • [1] 张冬晓. 无人机装备数据链电磁安全态势评估及防护方法研究[D]. 陆军工程大学石家庄校区, 2019: 12

    Zhang Dongxiao. Research on electromagnetic safety assessment and protection method of UAV’s datalink[D]. Army Engineering University Shijiazhuang Campus, 2019: 12
    [2] 赵敏, 许彤, 程二威, 等. 无人机数据链电磁干扰机理和防护研究[J]. 强激光与粒子束, 2021, 33:033005. (Zhao Min, Xu Tong, Cheng Erwei, et al. Mechanism and protection on the data link of UAV exposed to electromagnetic interference[J]. High Power Laser and Particle Beams, 2021, 33: 033005
    [3] 张庆龙. 无人机卫星导航终端电磁干扰效应及建模评估方法研究[D]. 陆军工程大学石家庄校区, 2021: 6

    Zhang Qinglong. Research on electromagnetic interference effect and modeling evaluation method of UAV satellite navigation terminal[D]. Army Engineering University Shijiazhuang Campus, 2021: 6
    [4] 赵铜城, 余道杰, 周东方, 等. 无人机GPS接收机超宽谱电磁脉冲效应与试验分析[J]. 强激光与粒子束, 2019, 31:023001. (Zhao Tongcheng, Yu Daojie, Zhou Dongfang, et al. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UAV GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31: 023001 doi: 10.11884/HPLPB201931.180365
    [5] 曹尹琦, 齐媛, 程刚, 等. 军用无人机小型光电吊舱的发展和关键技术[J]. 飞航导弹, 2016(3):54-59. (Cao Yinqi, Qi Yuan, Cheng Gang, et al. Development and key technologies of small optoelectronic pod for military UAV[J]. Aerodynamic Missile Journal, 2016(3): 54-59
    [6] 张冬晓, 陈亚洲, 程二威, 等. 无人机信息链路电磁干扰效应规律研究[J]. 北京理工大学学报, 2019, 39(7):756-762. (Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Effects of electromagnetic interference (EMI) on information link of UAV[J]. Transactions of Beijing Institute of Technology, 2019, 39(7): 756-762
    [7] 李伟, 魏光辉, 潘晓东, 等. 复杂电磁环境下通信装备干扰预测方法[J]. 电子与信息学报, 2017, 39(11):2782-2789. (Li Wei, Wei Guanghui, Pan Xiaodong, et al. Interference prediction method of communication equipment under complex electromagnetic environment[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2782-2789
    [8] 张庆龙, 王玉明, 程二威, 等. 导航接收机跟踪环路在电磁干扰下的效应律研究[J]. 北京理工大学学报, 2021, 41(2):207-213. (Zhang Qinglong, Wang Yuming, Cheng Erwei, et al. Effect law of navigation receiver tracking loop under electromagnetic interference[J]. Transactions of Beijing Institute of Technology, 2021, 41(2): 207-213
    [9] 陈亚洲, 程二威, 周星, 等. 无人机装备电磁环境效应与作用机理[M]. 北京: 国防工业出版社, 2017

    Chen Yazhou, Cheng Erwei, Zhou Xing, et al. Electromagnetic environment effect and action mechanism of UAV equipment[M]. Beijing: National Defense Industry Press, 2017
    [10] 乔治军, 潘绪超, 何勇, 等. 高功率电磁脉冲对无人飞行器的毁伤破坏[J]. 强激光与粒子束, 2017, 29:113202. (Qiao Zhijun, Pan Xuchao, He Yong, et al. Damage of high power electromagnetic pulse to unmanned aerial vehicles[J]. High Power Laser and Particle Beams, 2017, 29: 113202 doi: 10.11884/HPLPB201729.170216
    [11] 李亚南. 射频前端强电磁脉冲防护技术研究[D]. 陆军工程大学石家庄校区, 2019: 12

    Li Yanan. Research on the protection key technology of strong electromagnetic pulse for RF front-end[D]. Army Engineering University Shijiazhuang Campus, 2019: 12
    [12] 韩鹏伟. 射频前端抗强电磁脉冲关键技术研究[D]. 西安: 西安电子科技大学, 2018: 6

    Han Pengwei. Study of the strong electromagnetic pulse protection key technology for RF front-end[D]. Xi’an: Xidian University, 2018: 6
    [13] Yushchenko A Y, Ayzenshtat G I, Monastyrev E A, et al. Monolithic microwave ICs of limiter based on pin- and shottky diodes[C]//2011 21st International Crimean Conference “Microwave & Telecommunication Technology”. 2011: 163-164.
    [14] 刘洋, 程立, 汪家春, 等. 核电磁脉冲模拟器的电场特性及等离子体阵列的防护性能[J]. 国防科技大学学报, 2018, 40(4):41-46. (Liu Yang, Cheng Li, Wang Jiachun, et al. Electric field characteristics of nuclear electromagnetic pulse simulator and protection performance of plasma array[J]. Journal of National University of Defense Technology, 2018, 40(4): 41-46 doi: 10.11887/j.cn.201804007
    [15] 谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242. (Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242
    [16] 张冬晓, 陈亚洲, 程二威, 等. 用于无人机信息链路电磁干扰预测的动态电磁敏感度测试研究[J]. 高电压技术, 2019, 45(2):665-672. (Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Research on dynamic electromagnetic susceptibility for electromagnetic interference prediction of UAV information link[J]. High Voltage Engineering, 2019, 45(2): 665-672
    [17] 孙肖宁, 曲兆明, 王庆国, 等. 电场诱导二氧化钒绝缘-金属相变的研究进展[J]. 物理学报, 2019, 68:107201. (Sun Xiaoning, Qu Zhaoming, Wang Qingguo, et al. Research progress of metal-insulator phase transition in VO2 induced by electric field[J]. Acta Physica Sinica, 2019, 68: 107201 doi: 10.7498/aps.68.20190136
    [18] 王庆国, 卢聘, 曲兆明, 等. Ag纳米线/聚乙烯醇复合材料制备及其电磁脉冲响应特性[J]. 复合材料学报, 2020, 37(2):442-450. (Wang Qingguo, Lu Pin, Qu Zhaoming, et al. Preparation and electromagnetic pulse response characteristics of Ag nanowires/polyvinyl alcohol composites[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 442-450
    [19] 李宝毅, 赵亚娟, 王蓬, 等. 电磁防护超材料在国防领域中的应用与前景展望[J]. 电子元件与材料, 2019, 38(5):1-5. (Li Baoyi, Zhao Yajuan, Wang Peng, et al. The application and prospects of metamaterials for electromagnetic protection in defense fields[J]. Electronic Components and Materials, 2019, 38(5): 1-5
    [20] 满梦华, 巨政权, 原青云, 等. 基于电磁仿生概念的静电放电注入损伤防护模型设计[J]. 高电压技术, 2011, 37(2):375-381. (Man Menghua, Ju Zhengquan, Yuan Qingyun, et al. Design of protection model for electrostatic discharge injection injury based on the electromagnetic bionics[J]. High Voltage Engineering, 2011, 37(2): 375-381
    [21] 满梦华, 蔡娜, 马贵蕾, 等. 模仿神经元网络抗扰特性的电磁防护仿生研究[J]. 装备环境工程, 2017, 14(4):9-15. (Man Menghua, Cai Na, Ma Guilei, et al. Study on electromagnetic protection bionics by mimicking the anti-interference mechanism of neural network[J]. Equipment Environmental Engineering, 2017, 14(4): 9-15
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  448
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-11-11
  • 网络出版日期:  2021-11-19
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回