留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气冷微型堆可燃毒物研究

张成龙 袁媛 堵树宏 刘国明 贺楷 杨海峰 霍小东

张成龙, 袁媛, 堵树宏, 等. 气冷微型堆可燃毒物研究[J]. 强激光与粒子束, 2022, 34: 026010. doi: 10.11884/HPLPB202234.210264
引用本文: 张成龙, 袁媛, 堵树宏, 等. 气冷微型堆可燃毒物研究[J]. 强激光与粒子束, 2022, 34: 026010. doi: 10.11884/HPLPB202234.210264
Zhang Chenglong, Yuan Yuan, Du Shuhong, et al. Research on burnable poison in micro gas-cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34: 026010. doi: 10.11884/HPLPB202234.210264
Citation: Zhang Chenglong, Yuan Yuan, Du Shuhong, et al. Research on burnable poison in micro gas-cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34: 026010. doi: 10.11884/HPLPB202234.210264

气冷微型堆可燃毒物研究

doi: 10.11884/HPLPB202234.210264
基金项目: 中核集团集中研发项目
详细信息
    作者简介:

    张成龙,yulongmymail@163.com

    通讯作者:

    刘国明,liugma@cnpe.cc

  • 中图分类号: TL424

Research on burnable poison in micro gas-cooled reactor

  • 摘要: 为分析气冷微型堆可燃毒物布置策略,分别建立长寿期(15 MW-20 a)、短寿期(5 MW-1 a)、较长寿期(5 MW-3~10 a)不换料堆芯模型,利用通用蒙卡程序,研究气冷堆中常用可燃毒物核素种类、可燃毒物布置方案对堆芯反应性、寿期等特性的影响。研究结果表明:长寿期堆芯中,整体型Er2O3可以有效控制堆芯剩余反应性,但在寿期末会造成一定的反应性惩罚;整体型B4C可以较好地控制堆芯剩余反应性,并在寿期末几乎不会造成反应性惩罚,通过分区布置还可以优化功率分布;分离型B4C可以使燃耗特性曲线在寿期初和寿期中变化很平坦。短寿期堆芯中,分离型Gd2O3毒物棒可以很好地控制剩余反应性且不会缩短堆芯寿期;常见的B4C布置方式并不合适,但B4C弥散在堆芯石墨内可以起到较好的毒物效果。较长寿期堆芯中,分离型Gd2O3毒物棒不仅可以有效控制剩余反应性,还可以保证堆芯具备仅依靠温度负反馈实现自动停堆的固有安全性。研究结果将为后续气冷微堆型号研发提供指导。
  • 图  1  长寿期气冷堆堆芯布置示意图

    Figure  1.  Layout of long-lifetime gas-cooled core

    图  2  布置不同整体型可燃毒物的长寿期堆芯燃耗特性曲线

    Figure  2.  keff as a function of burnup for long-lifetime core with different monolithic burnable poison nuclides

    图  3  布置不同整体型B4C含量时长寿期堆芯燃耗特性曲线

    Figure  3.  keff as a function of burnup for long-lifetime core with different contents of B4C

    图  4  分区布置B4C时长寿期堆芯燃耗特性曲线

    Figure  4.  keff as a function of burnup for long-lifetime core with inhomogeneous distribution of B4C

    图  5  长寿期堆芯零燃耗功率分布图

    Figure  5.  Power distribution of long-lifetime core for zero-power

    图  6  B4C毒物棒布置示意图

    Figure  6.  Layout of B4C rod

    图  7  布置不同分离型B4C含量时长寿期堆芯燃耗特性曲线

    Figure  7.  keff as a function of burnup for long-lifetime core with different contents of B4C rod

    图  8  不同分离型B4C棒径时长寿期堆芯燃耗特性曲线

    Figure  8.  keff as a function of burnup for long-lifetime core with different diameter of B4C rod

    图  9  B4C棒含量分区布置时长寿期堆芯燃耗特性曲线(a)和零燃耗功率分布图(b)

    Figure  9.  keff as a function of burnup (a) and power distribution at zero-power (b) for long-lifetime core with inhomogeneous content distribution of B4C rod

    图  10  短寿期气冷堆堆芯布置示意图

    Figure  10.  Layout of short-lifetime gas-cooled core

    图  11  不同B4C毒物布置方案下短寿期堆芯燃耗特性曲线

    Figure  11.  keff as a function of burnup for short-lifetime core with different B4C layouts

    图  12  B4C毒物弥散在堆芯石墨时短寿期堆芯燃耗特性曲线

    Figure  12.  keff as a function of burnup for short-lifetime core when B4C in core graphite

    图  13  短寿期堆芯Gd2O3毒物棒布置示意图(a)及燃耗特性曲线图(b)

    Figure  13.  Layout of Gd2O3 rod (a) and keff as a function of burnup (b) for short-lifetime core

    图  14  较长寿期气冷堆堆芯布置示意图

    Figure  14.  Layouts of longer-lifetime gas-cooled core

    图  15  布置Gd2O3毒物棒的较长寿期堆芯燃耗特性曲线

    Figure  15.  keff as a function of burnup for longer-lifetime core with Gd2O3 rod

    表  1  几种可燃毒物核素特性

    Table  1.   Properties of several burnable poison nuclides

    materialabsorber nuclidenatural abundance/%0.0253 eV absorption cross-section/(10−28 m2)melting point/℃density/(g·cm−3)
    Gd2O3, Gd2O3155Gd, 157Gd14.71, 15.6860 799, 254 07023507.40
    B4C10B19.8383923502.52
    Er2O3167Er22.8764623558.64
    Sm2O3149Sm13.834071923258.35
    CdO113Cd12.262019214278.15
    Eu2O3151Eu52.18917220507.30
    下载: 导出CSV
  • [1] 张成龙, 堵树宏, 刘国明, 等. 小型模块化超级安全气冷堆中子学特性研究[J]. 核动力工程, 2019, 40(6):13-19. (Zhang Chenglong, Du Shuhong, Liu Guoming, et al. Research on neutronics characteristics of small modular super-safe gas-cooled reactor[J]. Nuclear Power Engineering, 2019, 40(6): 13-19
    [2] 张成龙, 刘国明, 贺楷, 等. 气冷微堆燃料设计的中子学特性影响研究[J]. 原子能科学技术, 2021, 55(11):2062-2069. (Zhang Chenglong, Liu Guoming, He Kai, et al. Research on influence of neutronics characteristics in fuel design of micro gas-cooled reactor[J]. Atomic Energy Science and Technology, 2021, 55(11): 2062-2069 doi: 10.7538/yzk.2021.youxian.0026
    [3] 吴宗鑫, 张作义. 先进核能系统和高温气冷堆[M]. 北京: 清华大学出版社, 2004

    Wu Zongxin, Zhang Zuoyi. Advanced nuclear power system and high temperature gas cooled reactor[M]. Beijing: Tsinghua University Press, 2004
    [4] 符晓铭, 王捷. 高温气冷堆在我国的发展综述[J]. 现代电力, 2006, 23(5):70-75. (Fu Xiaoming, Wang Jie. Development of high temperature gas cooled reactor in China[J]. Modern Electric Power, 2006, 23(5): 70-75 doi: 10.3969/j.issn.1007-2322.2006.05.011
    [5] 李志容, 陈立强, 徐校飞, 等. 模块式高温气冷堆的固有安全特性[J]. 核安全, 2013, 12(3):1-4. (Li Zhirong, Chen Liqiang, Xu Xiaofei, et al. Inherent safety features of the modular HTGR[J]. Nuclear Safety, 2013, 12(3): 1-4 doi: 10.3969/j.issn.1672-5360.2013.03.002
    [6] Bess J D, Fujimoto N, Dolphin B H, et al. Evaluation of the start-up core physics tests at Japan’s high temperature engineering test reactor (fully-loaded core)[R]. INL/EXT-08-14767, 2010.
    [7] Kunitomi K, Katanishi S, Takada S, et al. Japan’s future HTR – the GTHTR300[J]. Nuclear Engineering and Design, 2004, 233(1/3): 309-327.
    [8] Department of Energy. Preliminary safety information document for the standard MHTGR[R]. DOE/HTGR-86-024-Vol. 3, 1986.
    [9] Sterbentz J W, Bayless P D, Nelson L, et al. High-temperature gas-cooled test reactor point design: summary report[R]. INL/EXT-16-37661, 2016.
    [10] 清华大学工物系反应堆工程计算分析实验室. 堆用蒙卡程序RMC用户使用手册[M]. 北京: 清华大学, 2013

    Reactor Engineering Analysis Lab, Department of Engineering Physics,Tsinghua University. User manual of RMC Monte Carlo procedure used in reactors[M]. Beijing: Tsinghua University Press, 2013
    [11] 黄华伟, 王晓敏, 杨静, 等. 可燃毒物现状[J]. 材料开发与应用, 2010, 25(4):87-91,104. (Huang Huawei, Wang Xiaomin, Yang Jing, et al. Research progess in burnable poison process[J]. Development and Application of Materials, 2010, 25(4): 87-91,104 doi: 10.3969/j.issn.1003-1545.2010.04.021
    [12] 刘思佳, 朱贵凤, 严睿, 等. 小型模块化氟盐冷却高温堆可燃毒物布置方案[J]. 核技术, 2020, 43(5):61-66. (Liu Sijia, Zhu Guifeng, Yan Rui, et al. Placement scheme of burnable poisons in a small modular fluoride-cooled high temperature reactor[J]. Nuclear Techniques, 2020, 43(5): 61-66
    [13] 徐士坤, 于涛, 谢金森, 等. 可燃毒物布置方式的反应性波动特性研究[J]. 南华大学学报(自然科学版), 2020, 34(4):20-26. (Xu Shikun, Yu Tao, Xie Jinsen, et al. Research on reactive fluctuation characteristics of burnable poison arrangement[J]. Journal of University of South China (Science & Technology), 2020, 34(4): 20-26
    [14] 夏羿, 徐士坤, 谢金森, 等. 压水堆棒状燃料组件弥散型可燃毒物燃耗特性研究[J]. 南华大学学报(自然科学版), 2020, 34(4):34-41. (Xia Yi, Xu Shikun, Xie Jinsen, et al. The research on burnup characteristic of homogeneous mixing burnable poison for PWR rod fuel assembly[J]. Journal of University of South China (Science & Technology), 2020, 34(4): 34-41
    [15] 魏春琳, 张剑, 单文志, 等. 球床高温气冷堆使用可燃毒物的方案探讨[J]. 原子能科学技术, 2013, 47(s1):156-159. (Wei Chunlin, Zhang Jian, Shan Wenzhi, et al. Research on application of burnable poison in pebble bed HTR[J]. Atomic Energy Science and Technology, 2013, 47(s1): 156-159
    [16] 黄世恩, 杨平, 汪量子, 等. 长寿期堆芯可燃毒物选型研究[J]. 核动力工程, 2017, 38(2):6-10. (Huang Shien, Yang Ping, Wang Liangzi, et al. Research on selection of burnable poisons for long-life reactor core[J]. Nuclear Power Engineering, 2017, 38(2): 6-10
    [17] 魏书华. 板型先进高温堆的可燃毒物优化设计研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2015

    Wei Shuhua. Optimal design and research of burnable poisons for the plate-type advanced high-temperature reactor[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2015
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  791
  • HTML全文浏览量:  242
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 修回日期:  2021-12-21
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回