留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光产生的X射线双光谱成像

王洪建 叶雁 阳庆国 李泽仁 刘红杰

王洪建, 叶雁, 阳庆国, 等. 飞秒激光产生的X射线双光谱成像[J]. 强激光与粒子束, 2022, 34: 031015. doi: 10.11884/HPLPB202234.210287
引用本文: 王洪建, 叶雁, 阳庆国, 等. 飞秒激光产生的X射线双光谱成像[J]. 强激光与粒子束, 2022, 34: 031015. doi: 10.11884/HPLPB202234.210287
Wang Hongjian, Ye Yan, Yang Qingguo, et al. X-ray dual-spectrum imaging produced by femtosecond laser[J]. High Power Laser and Particle Beams, 2022, 34: 031015. doi: 10.11884/HPLPB202234.210287
Citation: Wang Hongjian, Ye Yan, Yang Qingguo, et al. X-ray dual-spectrum imaging produced by femtosecond laser[J]. High Power Laser and Particle Beams, 2022, 34: 031015. doi: 10.11884/HPLPB202234.210287

飞秒激光产生的X射线双光谱成像

doi: 10.11884/HPLPB202234.210287
基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金项目(U2030120);国家重点研发计划项目(2018YFB1306602);重庆市技术创新与应用发展项目(cstc2019jscx-msxmX0032);重庆工商大学科研平台项目(KFJJ2017052 、KFJJ2016031、1952038)
详细信息
    作者简介:

    王洪建,whj_cqu@163.com

  • 中图分类号: TH742.63

X-ray dual-spectrum imaging produced by femtosecond laser

  • 摘要: 在微介观诊断中往往因为空间限制,选择具有亮度高、单色性好、对比度强的特征谱线,而忽略了轫致辐射谱线。率先实验设计了特征谱线和轫致辐射谱线的双光谱诊断X射线光源的方法,在中国工程物理研究院“星光Ⅲ”激光装置飞秒激光束靶室上进行实验,激光功率密度大于1.6×1018 W/cm2,脉宽为30 fs,45°入射靶面。在入射靶前侧,设计了用于特征光谱成像的针孔成像光路,获得Cu纳米颗粒靶产生的特征X射线的焦斑图像,为76 μm,大于刃边方法测得半径为54 μm的焦斑。在靶后侧,设计了轫致辐射成像光路,利用PIX射线CCD获得2×5的圆形Ta组图像。实验表明,利用双光谱成像设计合理,适合微介观材料动态诊断,提高诊断效率。
  • 图  1  星光Ⅲ装置中双光谱成像实验布局图

    Figure  1.  Experiment setup of two spectrum imaging method on XG -Ⅲ facility

    图  2  轫致辐射背光成像(分别是原始图、半径为5,10和20 pixel的平坦型圆盘结构腐蚀)

    Figure  2.  Bremsstrahlung backlit imaging (original image, corrosion of flat disc structure with radius of 5, 10 and 20 pixel respectively)

    图  3  轫致辐射背光成像(分别是开运算、闭运算,先开后闭和先闭后开运算,3×3算子结构)

    Figure  3.  Bremsstrahlung backlit imaging (respectively open operation, close operation, open first and then close operation and close first and then open operation, 3×3 operator structure)

    图  4  针孔相机获取的图像

    Figure  4.  Image by pinhole CCD

  • [1] Ditmire T, Bless S, Dyer G, et al. Overview of future directions in high energy-density and high-field science using ultra-intense lasers[J]. Radiation Physics and Chemistry, 2004, 70(4/5): 535-552.
    [2] Ravasio A, Gregori G, Benuzzi-Mounaix A, et al. Direct observation of strong ion coupling in laser-driven shock-compressed targets[J]. Physical Review Letters, 2007, 99: 135006. doi: 10.1103/PhysRevLett.99.135006
    [3] Barbrel B, Koenig M, Benuzzi-Mounaix A, et al. Measurement of short-range correlations in shock-compressed plastic by short-pulse X-ray scattering[J]. Physical Review Letters, 2009, 102: 165004. doi: 10.1103/PhysRevLett.102.165004
    [4] Lee H J, Neumayer P, Castor J, et al. X-ray Thomson-scattering measurements of density and temperature in shock-compressed beryllium[J]. Physical Review Letters, 2009, 102: 115001. doi: 10.1103/PhysRevLett.102.115001
    [5] Lee H J, Workman J, Wark J S, et al. Optically induced lattice dynamics probed with ultrafast X-ray diffraction[J]. Physical Review B, 2008, 77: 132301. doi: 10.1103/PhysRevB.77.132301
    [6] Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the α-ε transition in shock-compressed iron via nanosecond X-ray diffraction[J]. Physical Review Letters, 2005, 95: 075502. doi: 10.1103/PhysRevLett.95.075502
    [7] 胡昌明, 王翔, 刘仓理, 等. 非均匀性对自由面粒子速度信号的影响[J]. 实验力学, 2008, 23(3):271-275. (Hu Changming, Wang Xiang, Liu Cangli, et al. Material inhomogeneity influence on free surface velocity signals[J]. Journal of Experimental Mechanics, 2008, 23(3): 271-275
    [8] Malone R M, Capelle G A, Celeste J R, et al. Overview of the line-imaging VISAR diagnostic at the National Ignition Facility (NIF)[C]//Proceedings of SPIE 6342, International Optical Design Conference 2006. Vancouver, 2006: 634220.
    [9] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
    [10] Trott W M, Renlund A M, Jungst R G. Single-pulse Raman and photoacoustic spectroscopy studies of triaminotrinitrobenzene (TATB) and related compounds[C]//Proceedings of SPIE 0540, Southwest Conf on Optics '85. Albuquerque, 1985: 368-375.
    [11] Asay J R, Hall C A, Konrad C H, et al. Use of Z-pinch sources for high-pressure equation-of-state studies[J]. International Journal of Impact Engineering, 1999, 23(1): 27-38. doi: 10.1016/S0734-743X(99)00059-7
    [12] Chhabildas L C, Trott W M, Reinhart W D, et al. Incipient spall studies in tantalum-microstructural effects[J]. AIP Conference Proceedings, 2002, 620(1): 483-486.
    [13] 辛建婷, 谷渝秋, 李平, 等. 强激光加载下金属材料微喷回收诊断[J]. 物理学报, 2012, 61:236201. (Xin Jianting, Gu Yuqiu, Li Ping, et al. Study on metal ejection under laser shock loading[J]. Acta Physica Sinica, 2012, 61: 236201 doi: 10.7498/aps.61.236201
    [14] Reich C, Gibbon P, Uschmann I, et al. Yield optimization and time structure of femtosecond laser plasma Kα sources[J]. Physical Review Letters, 2000, 84(21): 4846-4849. doi: 10.1103/PhysRevLett.84.4846
    [15] 王洪建, 叶雁, 李军, 等. 激光驱动产生X射线光源的双光谱成像装置: 201210252295.2[P]. 2012-11-14

    Wang Hongjian, Ye Yan, Li Jun, et al. Double-spectrum imaging device driven by laser to generate X-ray source: 201210252295.2[P]. 2012-11-14
    [16] 谭秀兰, 李恺, 罗炳池, 等. 去合金化工艺对纳米多孔铜纯度的影响[J]. 强激光与粒子束, 2013, 25(4):908-912. (Tan Xiulan, Li Kai, Luo Bingchi, et al. Effect of dealloying process on purity of nanoporous copper[J]. High Power Laser and Particle Beams, 2013, 25(4): 908-912 doi: 10.3788/HPLPB20132504.0908
    [17] Singh T, Kahlon K S, Dhaliwal A S. Total bremsstrahlung spectral photon distributions in metallic targets in the photon energy range of 5–10 keV by 204Tl beta particles[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(5): 737-741. doi: 10.1016/j.nimb.2009.01.009
    [18] Wang Hongjian, Li Zeren, Chen Zhanbin. High conversion efficiency and small spot size of Kα X-ray generated from nano-foam Cu targets irradiated by femtosecond laser pulses[J]. Applied Physics B, 2018, 124: 172.
    [19] 熊勇. 基于Kα射线超短超强激光超热电子转换研究[D]. 北京: 中国工程物理研究院, 2008: 90-92

    Xiong Yong. Conversion efficiencies of ultra-short ultraintensity laser to ultra hot based on Ka X -ray electron[D]. Beijing: China Academy of Engineering Physics, 2008: 90-92
    [20] 张双根, 谷渝秋, 温贤伦, 等. 相对论激光-固体靶作用中超热电子能谱测量[J]. 光电子·激光, 2006, 17(3):347-351. (Zhang Shuanggen, Gu Yuqiu, Wen Xianlun, et al. A measurement of hot electron energy spectrum in relativistic laser solid target interactions[J]. Journal of Optoelectronics Laser, 2006, 17(3): 347-351 doi: 10.3321/j.issn:1005-0086.2006.03.021
    [21] Liu Hongjie, Gu Yuqiu, Zhou Weimin, et al. Characterization of relativistic electrons generated by a cone guiding laser pulse[J]. Chinese Physics B, 2012, 21: 055207. doi: 10.1088/1674-1056/21/5/055207
    [22] 叶雁, 李剑峰, 李泽仁, 等. 超短超强激光与金属靶作用产生硬X射线照相[J]. 强激光与粒子束, 2008, 20(8):1357-1359. (Ye Yan, Li Jianfeng, Li Zeren, et al. Radiography of hard X-ray produced by ultra-short ultra-intense laser-metal targets interactions[J]. High Power Laser and Particle Beams, 2008, 20(8): 1357-1359
    [23] 刘艳莉. 工业X射线图像锐化技术算法研究[D]. 太原: 中北大学, 2015

    Liu Yanli. Study on industrial X-ray image sharpening technology algorithm[D]. Taiyuan: North University of China, 2015
    [24] 李晨光. 管道焊缝无损检测的综合方法结合及图像处理[D]. 青岛: 中国石油大学(华东), 2011

    Li Chenguang. Synthetical NDT and image processing for weld joint of pipeline[D]. Qingdao: China University of Petroleum (East China), 2011).
    [25] 王洪建, 阳庆国, 叶雁, 等. 重复频率下飞秒激光驱动产生的X射线焦斑测量[J]. 强激光与粒子束, 2015, 27:032039. (Wang Hongjian, Yang Qingguo, Ye Yan, et al. Measurement of femtosecond laser-driven X-ray focal spot with repetition frequency[J]. High Power Laser And Particle Beams, 2015, 27: 032039 doi: 10.11884/HPLPB201527.032039
    [26] Mao J Y, Chen L M, Ge X L, et al. Spectrally peaked electron beams produced via surface guiding and acceleration in femtosecond laser-solid interactions[J]. Physical Review E, 2012, 85: 025401. doi: 10.1103/PhysRevE.85.025401
  • 加载中
图(4)
计量
  • 文章访问数:  2144
  • HTML全文浏览量:  310
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-11-11
  • 网络出版日期:  2021-11-19
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回