留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Dakota的燃料棒设计验证不确定度研究

许多挺 金鑫 卫小艳 刘虓瀚 朱亚楠

许多挺, 金鑫, 卫小艳, 等. 基于Dakota的燃料棒设计验证不确定度研究[J]. 强激光与粒子束, 2022, 34: 026012. doi: 10.11884/HPLPB202234.210298
引用本文: 许多挺, 金鑫, 卫小艳, 等. 基于Dakota的燃料棒设计验证不确定度研究[J]. 强激光与粒子束, 2022, 34: 026012. doi: 10.11884/HPLPB202234.210298
Xu Duoting, Jin Xin, Wei Xiaoyan, et al. Uncertainty research of fuel rod design verification based on Dakota[J]. High Power Laser and Particle Beams, 2022, 34: 026012. doi: 10.11884/HPLPB202234.210298
Citation: Xu Duoting, Jin Xin, Wei Xiaoyan, et al. Uncertainty research of fuel rod design verification based on Dakota[J]. High Power Laser and Particle Beams, 2022, 34: 026012. doi: 10.11884/HPLPB202234.210298

基于Dakota的燃料棒设计验证不确定度研究

doi: 10.11884/HPLPB202234.210298
详细信息
    作者简介:

    许多挺,xuduoting411767430@163.com

  • 中图分类号: TB9

Uncertainty research of fuel rod design verification based on Dakota

  • 摘要: 燃料棒设计验证是评价燃料棒在反应堆内运行时安全性能的过程,其中输入参数的不确定度对评价结果有非常重要的影响。为了系统研究燃料棒设计验证的不确定度,使用Dakota中蒙特卡罗与拉丁超立方的非参数抽样方法,结合燃料棒性能分析软件开展了燃料棒设计验证计算,并与传统的不确定度计算方法进行了比较。结果表明,传统方法未充分考虑输入参数的不确定度,导致内压准则在正常运行条件下容易受到挑战,统计性的抽样方法弥补了这一缺陷,获得了较大的安全裕量,为燃料棒安全性以及经济性的提升提供了理论依据;同时,2种抽样方法所获得的燃料温度计算结果较传统方法更加具有参考意义;对于包壳腐蚀准则以及包壳应变准则,由于不确定度输入参数选取得当,抽样方法与传统方法的计算结果无明显区别。因此,基于非参数抽样的统计法对于评价燃料棒在反应堆内的安全性能更加具有实用性。
  • 图  1  燃料棒性能分析软件计算流程框图

    Figure  1.  Calculation flow of fuel rod performance analysis software

    图  2  Dakota与燃料棒性能分析软件之间的耦合关系

    Figure  2.  Coupling relationship between Dakota and fuel rod performance analysis software

    图  3  抽样次数确定过程

    Figure  3.  Sampling frequency determination process

    图  4  抽样结果

    Figure  4.  Sampling results

    图  5  MC抽样法与LHS方法燃料棒设计验证计算结果

    Figure  5.  Results of fuel rod design verification by MC sampling and LHS

    表  1  输入输出偏相关系数

    Table  1.   Partial correlation between input and output

    itempartial correlation coefficient
    fuel rod pressurepellet temperaturecladding corrosioncladding strain change
    MCLHSMCLHSMCLHSMCLHS
    fuel OD −0.957 −0.961 −0.365 −0.348 0.054 0.090 0.291 0.253
    fuel porosity 0.996 0.996 0.999 0.999 0.059 0.019 0.403 0.411
    cladding OD 0.071 0.015 0.025 0.040 −0.403 −0.104 0.022 −0.040
    cladding ID 0.185 0.018 −0.013 −0.037 0.053 0.040 −0.035 0.037
    plenum length −0.262 −0.041 0.028 −0.024 −0.025 0.036 0.024 −0.001
    235U enrichment 0.120 0.083 0.407 0.462 0.096 0.007 −0.037 0.013
    fuel column length 0.034 −0.004 0.030 −0.024 −0.053 0.029 0.024 −0.001
    fuel conductivity −0.999 −0.999 −0.024 −0.041 −0.419 −0.415
    density change by resintering −0.987 −0.987 −0.996 −0.996 −0.053 −0.056 −0.422 −0.466
    cladding corrosion model 0.458 0.459 0.646 0.690 1.000 1.000 −0.022 0.067
    fuel solid swell model 0.240 0.177 −0.294 −0.323 0.033 −0.003 0.116 0.102
    cladding creep model −0.367 −0.450 −0.017 0.038 0.055 0.016 0.366 0.351
    下载: 导出CSV
  • [1] 王璐, 张林, 徐腾, 等. 燃料棒设计关键参数敏感性分析[J]. 应用科技, 2019, 46(6):69-72. (Wang Lu, Zhang Lin, Xu Teng, et al. Sensitivity analysis of key parameters in fuel rod design[J]. Applied Science and Technology, 2019, 46(6): 69-72
    [2] 周勤. 压水堆燃料棒设计参数不确定性研究[J]. 原子能科学技术, 2003, 37(s1):5-9. (Zhou Qin. Research on uncertainty of design parameters for PWR fuel rod[J]. Atomic Energy Science and Technology, 2003, 37(s1): 5-9
    [3] International Atomic Energy Agency. Best estimate safety analysis for nuclear power plants: uncertainty evaluation[R]. Vienna: International Atomic Energy Agency, 2008.
    [4] Briggs L L. Uncertainty quantification approaches for advanced reactor analyses[R]. Chicago: Argonne National Laboratory, 2008.
    [5] Prošek A, Mavko B. The state-of-the-art theory and applications of best-estimate plus uncertainty methods[J]. Nuclear Technology, 2007, 158(1): 69-79. doi: 10.13182/NT07-1
    [6] 陈炼, 房芳芳, 邓程程, 等. 核电站最佳估算安全分析中的不确定度评估方法分析[J]. 原子能科学技术, 2015, 49(7):1237-1242. (Chen Lian, Fang Fangfang, Deng Chengcheng, et al. Analysis on uncertainty evaluation method in best estimate safety analysis of nuclear power plant[J]. Atomic Energy Science and Technology, 2015, 49(7): 1237-1242 doi: 10.7538/yzk.2015.49.07.1237
    [7] Wensauer A, Distler I, Heins L. Probabilistic uncertainty analysis applied to fuel rod design[M]//Spitzer C, Schmocker U, Dang V N. Probabilistic Safety Assessment and Management. London: Springer, 2004: 2791-2796.
    [8] Boulore A. Importance of uncertainty quantification in unclear fuel behavior modeling and simulation[C]//Best Estimate Plus Uncertainty International Conference. Lucca, 2018.
    [9] Bratton R N, Jessee M A, Wieselquist W A, et al. Rod internal pressure distribution and uncertainty analysis using FRAPCON[J]. Nuclear Technology, 2017, 197(1): 47-63. doi: 10.13182/NT16-75
    [10] Hernandez-Solis A, Ekberg C, Jensen A O, et al. Statistical uncertainty analyses of void fraction predictions using two different sampling strategies: Latin hypercube and simple random sampling[C]//Proceedings of the 18th International Conference on Nuclear Engineering. Xi’an, China: ASNE, 2010: 1059-1068.
    [11] Ikonen T, Tulkki V. The importance of input interactions in the uncertainty and sensitivity analysis of nuclear fuel behavior[J]. Nuclear Engineering and Design, 2014, 275: 229-241. doi: 10.1016/j.nucengdes.2014.05.015
    [12] 王国栋, 王喆, 扈本学, 等. 应用DAKOTA程序耦合WGOTHIC程序进行安全壳压力响应敏感性分析[J]. 原子能科学技术, 2015, 49(12):2176-2180. (Wang Guodong, Wang Zhe, Hu Benxue, et al. Sensitivity analysis on containment pressure response using coupled DAKOTA and WGOTHIC codes[J]. Atomic Energy Science and Technology, 2015, 49(12): 2176-2180 doi: 10.7538/yzk.2015.49.12.2176
    [13] Wang J R, Tsai C W, Lin H T, et al. Performing uncertainty analysis of IIST facility SBLOCA by TRACE and DAKOTA[R]. Washington DC: Nuclear Regulatory Commission, 2013.
    [14] 高新力, 靖剑平, 温爽, 等. DAKOTA-RELAP不确定性分析方法在大破口事故中的应用[J]. 核安全, 2016, 15(1):66-70. (Gao Xinli, Jing Jianping, Wen Shuang, et al. Application of DAKOTA-RELAP method in the uncertainty analysis of LB-LOCA[J]. Nuclear Safety, 2016, 15(1): 66-70
    [15] 兰兵, 潘昕怿, 石兴伟, 等. DAKOTA法量化AP1000堆芯物理不确定性[J]. 核电子学与探测技术, 2019, 39(6):668-672. (Lan Bing, Pan Xinyi, Shi Xingwei, et al. Application of DAKOTA method in AP1000 core physics uncertainty quantization[J]. Nuclear Electronics & Detection Technology, 2019, 39(6): 668-672
    [16] 孙山泽. 非参数统计讲义[M]. 北京: 北京大学出版社, 2020: 147-150

    Sun Shanze. Nonparametric statistics handout[M]. Beijing: Peking University Press, 2020: 147-150)
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  247
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-09-09
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回