留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MC模拟无卷积全谱转换法测量X,γ辐射剂量

曹蕾 张耀锋 杨扬 黄建微 张晓乐

曹蕾, 张耀锋, 杨扬, 等. MC模拟无卷积全谱转换法测量X,γ辐射剂量[J]. 强激光与粒子束, 2022, 34: 026005. doi: 10.11884/HPLPB202234.210300
引用本文: 曹蕾, 张耀锋, 杨扬, 等. MC模拟无卷积全谱转换法测量X,γ辐射剂量[J]. 强激光与粒子束, 2022, 34: 026005. doi: 10.11884/HPLPB202234.210300
Cao Lei, Zhang Yaofeng, Yang Yang, et al. Measurement of environmental level X, γ dose with conversion of complete spectra without deconvolution method of MC simulation[J]. High Power Laser and Particle Beams, 2022, 34: 026005. doi: 10.11884/HPLPB202234.210300
Citation: Cao Lei, Zhang Yaofeng, Yang Yang, et al. Measurement of environmental level X, γ dose with conversion of complete spectra without deconvolution method of MC simulation[J]. High Power Laser and Particle Beams, 2022, 34: 026005. doi: 10.11884/HPLPB202234.210300

MC模拟无卷积全谱转换法测量X,γ辐射剂量

doi: 10.11884/HPLPB202234.210300
基金项目: 基本科研业务费重点领域项目(AKYZD2015)
详细信息
    作者简介:

    曹 蕾,lcao@mail.bnu.edu.cn

    通讯作者:

    黄建微,huangjw@nim.ac.cn

  • 中图分类号: TL72

Measurement of environmental level X, γ dose with conversion of complete spectra without deconvolution method of MC simulation

  • 摘要: 为了更好地进行环境X/γ辐射剂量的测量,通过对电制冷高纯锗探测器蒙特卡罗建模获取0.01~1.5 MeV能量范围内的能谱和剂量(率)值,并利用无卷积全谱转换法进行能谱-剂量转换研究。研究发现,通过无卷积全谱转换法计算得到的剂量率与模拟剂量率符合较好;通过在中国计量研究院环境γ辐射空气吸收剂量标准辐射场中进行Co-60和Cs-137放射源剂量率实验验证,结果显示,在0.01~1.5 MeV的能量范围内,通过能谱-剂量转换得到剂量率与标准剂量率的误差小于±10%,这表明通过无卷积全谱转换法进行能谱-剂量(率)转换系数的求解是可行的。
  • 图  1  高纯锗探测器CT扫描图

    Figure  1.  CT images of HPGe detector

    图  2  高纯锗探测器MCNP模型示意图

    Figure  2.  Schematic diagram of MCNP model of HPGe detector

    图  3  高纯锗探测器刻度实验图

    Figure  3.  Diagram of calibration measuring situation for HPGe detector

    图  4  实验探测效率与模拟探测效率对比图

    Figure  4.  Comparison of experimental detection efficiency and simulated detection efficiency

    图  5  高纯锗探测器测量放射源实验装置图

    Figure  5.  Experimental device for measuring radioactive source with high purity germanium detector

    图  6  10L球电离室测量放射源实验装置图

    Figure  6.  Experimental device for measuring radioactive sources in a 10L spherical ionization chamber

    图  7  MCNP模拟不同能量的能谱结果

    Figure  7.  Energy spectrum of different energies simulated by MCNP

    图  8  MCNP模拟Co-60,Cs-137的能谱结果

    Figure  8.  Energy spectrum of Co-60 and Cs-137 simulated by MCNP

    图  9  能量组1号GGE的求解结果

    Figure  9.  Results of G and GE for energy group No. 1

    图  10  能量组2号GGE的求解结果

    Figure  10.  Results of G and GE for energy group No. 2

    图  11  高纯锗探测器 Co-60能谱

    Figure  11.  Energy spectrum of Co-60 of high purity germanium detector

    图  12  高纯锗探测器 Cs-137的能谱

    Figure  12.  Energy spectrum of Cs-137 of high purity germanium detector

    表  1  高纯锗探测器能量刻度测量结果

    Table  1.   Result of the calibration measurement of HPGe detector

    radioactive sourceenergy/keVFWHM/MeVdetection efficiency/%
    Co-57122.062.74×10−30.239
    136.472.67×10−30.274
    Co-601173.243.44×10−30.057
    1332.513.51×10−30.052
    Cs-137661.663.36×10−30.092
    Na-221274.543.17×10−30.054
    下载: 导出CSV

    表  2  不同死层厚度高纯锗探测器模拟探测效率结果

    Table  2.   Simulated detection efficiency results of HPGe detector with different dead layer thickness

    E/keVexperimental
    detection
    efficiency/%
    simulated detection efficiency at different dead layer/%
    0.05 cm0.07 cm0.10 cm0.12 cm0.17 cm0.22 cm
    122.06 0.278 0.230 0.273 0.264 0.250 0.228 0.208
    136.47 0.275 0.293 0.283 0.288 0.264 0.245 0.227
    511.00 0.128 0.078 0.119 0.116 0.116 0.112 0.108
    661.66 0.092 0.098 0.098 0.091 0.095 0.092 0.089
    1173.24 0.058 0.031 0.063 0.062 0.062 0.060 0.059
    1274.54 0.055 0.021 0.060 0.058 0.058 0.056 0.055
    1332.51 0.052 0.029 0.057 0.056 0.056 0.054 0.053
    下载: 导出CSV

    表  3  能量组2号无卷积全谱转换法与模拟剂量率的比较

    Table  3.   Dose rate of conversion of complete spectra without deconvolution method and simulation of energy group No. 2

    average energy/MeVsimulated dose
    rate/(nGy·h−1)
    dose rate of conversion of complete spectra
    without deconvolution method /(nGy·h−1)
    residue/
    (nGy·h−1)
    0.0551.80×10−51.80×10−50
    0.0701.72×10−51.72×10−50
    1.0002.20×10−52.20×10−50
    0.1252.82×10−52.82×10−59.83×10−20
    0.1704.11×10−54.11×10−59.49×10−20
    0.6622.00×10−32.00×10−30
    1.2503.44×10−33.44×10−39.97×10−18
    下载: 导出CSV

    表  4  10 L球电离室在不同距离处测量放射源Co-60和Cs-137剂量率结果

    Table  4.   The results of measuring the dose rate of Co-60 and Cs-137 in a 10 L spherical ionization chamber at different distances

    radioactive
    source
    distance/mmeasured dose
    rate/(nGy·h−1)
    standard value of
    dose rate/(nGy·h−1)
    relative error of measured
    value and standard value/%
    Cs-1373.053435397−1.001
    Cs-1373.5396539620.076
    Cs-1374.030183028−0.330
    Cs-1374.52395.52396−0.021
    Co-603.013681355.4−0.921
    Co-603.51005988.5−1.642
    Co-604.0769776.10.923
    Co-604.5607602.55−0.733
    下载: 导出CSV

    表  5  能量组2号无卷积全谱转换法剂量率值与标准值比较

    Table  5.   Comparison of dose rate of Conversion of complete spectra without deconvolution method and the standard value

    radioactive
    source
    distance/mdose rate of conversion of complete spectra
    without deconvolution method/(nGy·h−1)
    live time
    rate/%
    standard value of
    dose rate/(nGy·h−1)
    relative error of calculated
    value and standard value/%
    Cs-1373.06115.90.555830.08.02
    Cs-1373.54497.10.634286.58.19
    Cs-1374.03372.50.723214.16.15
    Cs-1374.52688.60.752562.16.93
    Co-603.01363.10.921339.7−2.07
    Co-603.51010.50.93993.0−1.20
    Co-604.0770.50.95757.0−1.56
    Co-604.5609.70.96598.9−1.33
    下载: 导出CSV
  • [1] Knežević Z, Majer M, Baranowska Z, et al. Investigations into the basic properties of different passive dosimetry systems used in environmental radiation monitoring in the aftermath of a nuclear or radiological event[J]. Radiation Measurements, 2021, 146: 106615. doi: 10.1016/j.radmeas.2021.106615
    [2] 王成竹, 张佳, 沈杨, 等. GM计数管能量响应补偿研究的新思路[J]. 核电子学与探测技术, 2013, 33(10):1215-1218. (Wang Chengzhu, Zhang Jia, Shen Yang, et al. A research of energy response compensation for G-M counter[J]. Nuclear Electronics & Detection Technology, 2013, 33(10): 1215-1218 doi: 10.3969/j.issn.0258-0934.2013.10.011
    [3] 郭思明, 黄建微, 杨扬. 用于环境辐射监测的高气压电离室性能研究[J]. 计量学报, 2020, 41(s1):172-176. (Guo Siming, Huang Jianwei, Yang Yang. Study on the performance of high-pressure ionization chamber for environmental radiation monitoring[J]. Acta Metrologica Sinica, 2020, 41(s1): 172-176
    [4] 于兴明. 基于脉冲计数模式的闪烁体剂量研究[J]. 信息与电脑, 2016(12):61-62. (Yu Xingming. Research on scintillator dose based on pulse counting mode[J]. China Computer & Communication, 2016(12): 61-62 doi: 10.3969/j.issn.1003-9767.2016.12.035
    [5] Moriuchi S. A new method of dose evaluation by spectrum-dose conversion operator and determination of the operator[R]. JAERI-1209, 1971.
    [6] 贺军, 杨朝文. 用γ能谱全能峰计数率测量辐射剂量率的方法研究[J]. 核技术, 2014, 37(7):47-52. (He Jun, Yang Chaowen. Measurement of γ absorption dose rate through measuring the full energy peak of γ spectrum[J]. Nuclear Techniques, 2014, 37(7): 47-52
    [7] 黄建微, 李德红, 张健, 等. γ能谱-剂量转换法测量环境辐射剂量[J]. 核电子学与探测技术, 2017, 37(5):468-473. (Huang Jianwei, Li Dehong, Zhang Jian, et al. Study on reference measurement method of dose of environmental radiation based on G-function[J]. Nuclear Electronics & Detection Technology, 2017, 37(5): 468-473
    [8] 唐丽丽. γ能谱全谱法测定γ剂量方法技术研究[D]. 成都: 成都理工大学, 2010.

    Tang Lili. Study on the techniques of γ dose determination by γ spectrum[D]. Chengdu: Chengdu University of Technology, 2010
    [9] 李爱芹. 线性方程组的迭代解法[J]. 科学技术与工程, 2007, 7(14):3357-3364. (Li Aiqin. Iterative methods for solving the linear systems[J]. Science Technology and Engineering, 2007, 7(14): 3357-3364 doi: 10.3969/j.issn.1671-1815.2007.14.006
    [10] 隗莲. 基于γ能谱的注量测量与分析[D]. 哈尔滨: 哈尔滨工程大学, 2013.

    Wei Lian. The measurement and analysis of influence based on γ energy spectrum[D]. Harbin: Harbin Engineering University, 2013
    [11] Dombrowski H. Area dose rate values derived from NaI or LaBr3 spectra[J]. Radiation Protection Dosimetry, 2014, 160(4): 269-276. doi: 10.1093/rpd/nct349
    [12] 许淑艳. 蒙特卡罗方法在实验核物理中的应用[M]. 2版. 北京: 原子能出版社, 2006.

    Xu Shuyan. Application of Monte Carlo method in experimental nuclear physics[M]. 2nd ed. Beijing: Atomic Energy Press, 2006
    [13] 张立国, 刘宇, 肖志刚. MCNP模拟HPGe谱仪γ能谱的初步实验验证一例[J]. 核电子学与探测技术, 2010, 30(9):1135-1138,1143. (Zhang Liguo, Liu Yu, Xiao Zhigang. A case of comparison between γ spectra simulated by MCNP and corresponding experimental ones[J]. Nuclear Electronics & Detection Technology, 2010, 30(9): 1135-1138,1143 doi: 10.3969/j.issn.0258-0934.2010.09.001
    [14] 黄建微, 李德红, 吴迪, 等. MC模拟能谱对G函数法测量剂量率值结果的影响[J]. 核电子学与探测技术, 2016, 36(3):283-286. (Huang Jianwei, Li Dehong, Wu Di, et al. Calculating the effect of the energy-spectrum for the dose rate of G-function using Monte Carlo method[J]. Nuclear Electronics & Detection Technology, 2016, 36(3): 283-286 doi: 10.3969/j.issn.0258-0934.2016.03.012
    [15] 华艳, 朱祚缤, 刘艺琴, 等. 高纯锗探测器的效率刻度[J]. 核电子学与探测技术, 2014, 34(1):86-88,116. (Hua Yan, Zhu Zuobin, Liu Yiqin, et al. Calibration of HPGe detector efficiency[J]. Nuclear Electronics & Detection Technology, 2014, 34(1): 86-88,116 doi: 10.3969/j.issn.0258-0934.2014.01.021
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  227
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-09-08
  • 网络出版日期:  2021-09-18
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回