留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压水堆核电站燃料组件弯曲对堆芯中子学的影响分析计算

陈思延 潘晖 陈俊 赵常有 郑君萧 王超 卢皓亮 韩嵩

陈思延, 潘晖, 陈俊, 等. 压水堆核电站燃料组件弯曲对堆芯中子学的影响分析计算[J]. 强激光与粒子束, 2022, 34: 026014. doi: 10.11884/HPLPB202234.210312
引用本文: 陈思延, 潘晖, 陈俊, 等. 压水堆核电站燃料组件弯曲对堆芯中子学的影响分析计算[J]. 强激光与粒子束, 2022, 34: 026014. doi: 10.11884/HPLPB202234.210312
Chen Siyan, Pan Hui, Chen Jun, et al. Analysis and calculation on core neutronics affected by the assembly bowing in pressurized water reactor nuclear power plant[J]. High Power Laser and Particle Beams, 2022, 34: 026014. doi: 10.11884/HPLPB202234.210312
Citation: Chen Siyan, Pan Hui, Chen Jun, et al. Analysis and calculation on core neutronics affected by the assembly bowing in pressurized water reactor nuclear power plant[J]. High Power Laser and Particle Beams, 2022, 34: 026014. doi: 10.11884/HPLPB202234.210312

压水堆核电站燃料组件弯曲对堆芯中子学的影响分析计算

doi: 10.11884/HPLPB202234.210312
详细信息
    作者简介:

    陈思延,chensiyan@cgnpc.com.cn

  • 中图分类号: TL352.1

Analysis and calculation on core neutronics affected by the assembly bowing in pressurized water reactor nuclear power plant

  • 摘要: 在压水堆核电站中,由于燃料组件装配的压紧力、冷却剂流动、辐射蠕变、燃耗等因素会导致燃料组件的弯曲,燃料组件的弯曲对组件间的水隙分布产生影响,从而影响中子的慢化行为及堆芯的传热性能,进而对反应堆堆芯的运行参数造成影响。本文分析了组件弯曲的成因及机理、影响及后果(包括对堆芯功率分布、径向功率倾斜、焓升因子、热点因子等参数的影响),并使用蒙特卡罗软件JMCT,对组件弯曲的确定论计算程序的正确性进行了验证。最后通过确定论的计算程序模块,对CPR1000核电站的组件弯曲情况进行了模拟分析,计算结果表明:在某一燃耗下,随着水隙增加或减小,燃料组件功率会随之增加或减小,使堆芯的功率分布发生倾斜,影响核电站的安全运行。
  • 图  1  燃料组件弯曲类型

    Figure  1.  Types of the fuel assembly bowing

    图  2  氢5比对反应堆中子增殖特性的影响

    Figure  2.  Effect of the ratio NH/N5 on reactor neutron multiplication

    图  3  3×3组件弯曲验证模型

    Figure  3.  Validation model of the 3×3 assemblies bowing

    图  4  堆芯装载图

    Figure  4.  Diagram of the core loading

    图  5  单排水隙变化后组件功率偏差

    Figure  5.  Power deviation after the watergap of rank H changed

    图  6  单排水隙变化后堆芯功率倾斜(TILT)

    Figure  6.  Core power tilt after the watergap of rank H changed

    图  7  单排水隙变化后H08组件燃料棒功率变化

    Figure  7.  Power distribution of fuel rod in H08 after the watergap of rank H changed

    表  1  3×3组件中心组件弯曲前后棒功率对比表

    Table  1.   Comparison of the rod power before and after bowing of the center assembly in a 3×3 assemblies group

    enrichmentmagnification
    of watergap
    discrepancy of power
    after bowing (PCM)
    discrepancy of power
    after bowing (JMCT)
    difference between PCM
    and JMCT
    1.80%929.38%31.88%−2.50%
    4.45%944.93%47.49%−2.56%
    下载: 导出CSV

    表  2  组件弯曲PCM与蒙特卡罗软件对比表

    Table  2.   Comparison of the PCM and JMCT on the assembly bowing

    power discrepancy of
    H08 assembly (PCM)
    power discrepancy of
    H08 assembly (JMCT)
    difference between PCM
    and JMCT
    case11.70%3.40%2.80%
    case25.60%6.60%−2.30%
    下载: 导出CSV
  • [1] Lambert S, Campioni G, Faucher V, et al. Modeling the consequences of fuel assembly bowing on PWR core neutronics using a Monte-Carlo code[J]. Annals of Nuclear Energy, Elsevier Masson, 2019, 134: 330-341. doi: 10.1016/j.anucene.2019.06.017
    [2] Wang Y, Chen J, Wei L. A method for calculating the assembly bowing reactivity coefficients in sodium fast reactor[J]. Annals of Nuclear Energy, 2021, 155: 108176. doi: 10.1016/j.anucene.2021.108176
    [3] 卢皓亮, 陈俊, 王军令, 等. 自主化堆芯核设计软件COCO验证与确认[J]. 原子能科学技术, 2017, 51(8):1459-1463. (Lu Haoliang, Chen Jun, Wang Junling, et al. Verification and validation of self-reliant core nuclear design code COCO[J]. Atomic Energy Science and Technology, 2017, 51(8): 1459-1463 doi: 10.7538/yzk.2017.51.08.1459
    [4] 李刚, 张宝印, 邓力, 等. 蒙特卡罗粒子输运程序JMCT研制[J]. 强激光与粒子束, 2013, 25(1): 158-162

    Li Gang, Zhang Baoying, Deng Li, et al. Development of Monte Carlo particle transport code JMCT. High Power Laser and Particle Beams, 2013, 25(1): 158-162
    [5] 李朋洲, 李琦. 压水堆燃料组件研发中的力学问题[J]. 核动力工程, 2015, 36(5):136-139. (Li Pengzhou, Li Qi. Mechanic problems in PWR fuel assembly research and development[J]. Nuclear Power Engineering, 2015, 36(5): 136-139
    [6] 沈增耀. 压水堆核电厂核岛设计. 总论[M]. 北京: 原子能出版社, 2010: 15-16

    Shen Zengyao. Design of nuclear island for pressurized water reactor nuclear power plant[M]. Beijing: Atomic Energy Press, 2010: 15-16
    [7] 李伟才, 肖忠. 压水堆燃料组件弯曲变形机理及规避措施[J]. 核动力工程, 2008, 29(2):55-57. (Li Weicai, Xiao Zhong. Mechanism of fuel assembly bowing in PWR and preventive measures[J]. Nuclear Power Engineering, 2008, 29(2): 55-57
    [8] Grimm P, Jatuff F, Murphy M. Experimental validation of channel bowing effects on pin power distributions in a Westinghouse SVEA-96+ Assembly[J]. Journal of Nuclear Science and Technology, 2006, 43(3): 223-230. doi: 10.1080/18811248.2006.9711084
    [9] Plaschy M, Jatuff F, Grimm P, et al. Comparisons of deterministic neutronic calculations with Monte Carlo results for an advanced BWR fuel assembly with hafnium control blades[J]. Journal of Nuclear Science & Technology, 2006, 43(11): 1298-1310.
    [10] 王超, 杨铄龑, 彭思涛, 等. 自主PCM核设计软件包的自动化验证[J]. 核动力工程, 2018, 39(S2):46-49. (Wang Chao, Yang Shuoyan, Peng Sitao, et al. Automated validation of CGN nuclear software package PCM[J]. Nuclear Power Engineering, 2018, 39(S2): 46-49
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  208
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-11-20
  • 录用日期:  2021-11-16
  • 网络出版日期:  2021-11-19
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回