留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光偏振状态对磁化等离子体中电磁孤波的影响

段杭杭 陈华英 刘三秋

段杭杭, 陈华英, 刘三秋. 激光偏振状态对磁化等离子体中电磁孤波的影响[J]. 强激光与粒子束, 2022, 34: 022002. doi: 10.11884/HPLPB202234.210339
引用本文: 段杭杭, 陈华英, 刘三秋. 激光偏振状态对磁化等离子体中电磁孤波的影响[J]. 强激光与粒子束, 2022, 34: 022002. doi: 10.11884/HPLPB202234.210339
Duan Hanghang, Chen Huaying, Liu Sanqiu. Influence of polarization of laser beam on solitary wave in magnetized plasma[J]. High Power Laser and Particle Beams, 2022, 34: 022002. doi: 10.11884/HPLPB202234.210339
Citation: Duan Hanghang, Chen Huaying, Liu Sanqiu. Influence of polarization of laser beam on solitary wave in magnetized plasma[J]. High Power Laser and Particle Beams, 2022, 34: 022002. doi: 10.11884/HPLPB202234.210339

激光偏振状态对磁化等离子体中电磁孤波的影响

doi: 10.11884/HPLPB202234.210339
基金项目: 江西省聚变能与信息控制重点实验室基金项目(20171BCD40005)
详细信息
    作者简介:

    段杭杭,2239406586@qq.com

    通讯作者:

    陈华英,chenhuaying@ncu.edu.cn

  • 中图分类号: O534

Influence of polarization of laser beam on solitary wave in magnetized plasma

  • 摘要: 强激光与等离子体之间相互作用,能够产生各种参量不稳定性过程和非线性效应。利用Karpman方法推导出横场包络所满足的非线性控制性方程,在一维情况下,获得孤波解。对孤波解进行分析,发现波包孤子的半宽反比于振幅;分析磁化等离子体中各参量对孤波半宽的影响。结果表明,在右旋圆偏振激光情况下,随着电子数密度的增大,孤波的半宽逐渐减小,而当磁场强度增大时,孤波的半宽逐渐增大;在左旋圆偏振激光情况下,随着电子数密度的增大,孤波的半宽逐渐增大,而当磁场强度增大时,孤波的半宽逐渐减小。
  • 图  1  P=0.271时,孤波半宽随电子数密度的变化

    Figure  1.  Variation of solitary wave half width with electron number density at P = 0.271

    图  2  P=0.857时,孤波半宽随电子数密度的变化

    Figure  2.  Variation of solitary wave half width with electron number density at P = 0.857

    图  3  P=0.271时,孤波半宽随磁场强度的变化

    Figure  3.  Variation of solitary wave half width with magnetic field intensity at P = 0.271

    图  4  P=0.857时,孤波半宽随磁场强度的变化

    Figure  4.  Variation of solitary wave half width with magnetic field intensity at P = 0.857

    图  5  P =0.271时,孤波半宽随电子数密度的变化

    Figure  5.  Variation of solitary wave half width with electron number density at P = 0.271

    图  6  P=0.857时,孤波半宽随电子数密度的变化

    Figure  6.  Variation of solitary wave half width with electron number density at P=0.857

    图  7  P=0.271时,孤波半宽随磁场强度的变化

    Figure  7.  Variation of solitary wave half width with magnetic field intensity at P=0.271

    图  8  P=0.857时,孤波半宽随磁场强度的变化

    Figure  8.  Variation of solitary wave half width with magnetic field intensity at P=0.857

  • [1] 冷雨欣. 上海超强超短激光实验装置[J]. 中国激光, 2019, 46:0100001. (Leng Yuxin. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100001 doi: 10.3788/CJL201946.0100001
    [2] 陈华英. 强激光在磁化等离子体中调制不稳定性及坍塌研究[D]. 南昌: 南昌大学, 2011: 8-13

    Chen Huaying. Study on modulation instability and collapse of intense laser beam in magnetized plasma[D]. Nanchang: Nanchang University, 2011: 8-13
    [3] 毕碧, 周维民, 单连强, 等. 皮秒短脉冲X射线背光诊断快点火靶丸压缩面密度[J]. 强激光与粒子束, 2020, 32:042001. (Bi Bi, Zhou Weimin, Shan Lianqiang, et al. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32: 042001 doi: 10.11884/HPLPB202032.200050
    [4] 单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004. (Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004 doi: 10.11884/HPLPB202133.200235
    [5] 徐新荣, 仲丛林, 张铱, 等. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展[J]. 物理学报, 2021, 70:084206. (Xu Xinrong, Zhong Conglin, Zhang Yi, et al. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma[J]. Acta Physica Sinica, 2021, 70: 084206
    [6] 沈百飞, 吉亮亮, 张晓梅, 等. 强场X射线激光物理[J]. 物理学报, 2021, 70:084101. (Shen Baifei, Ji Liangliang, Zhang Xiaomei, et al. High field X-ray laser physics[J]. Acta Physica Sinica, 2021, 70: 084101 doi: 10.7498/aps.70.20210096
    [7] 余诗瀚, 李晓锋, 翁苏明, 等. 激光等离子体不稳定性及其抑制方案研究[J]. 强激光与粒子束, 2021, 33:012006. (Yu Shihan, Li Xiaofeng, Weng Suming, et al. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33: 012006 doi: 10.11884/HPLPB202133.200125
    [8] 刘明萍, 柳剑鹏, 罗荣祥, 等. 强激光脉冲在部分离化等离子体中的传播特性[J]. 强激光与粒子束, 2014, 26:072006. (Liu Mingping, Liu Jianpeng, Luo Rongxiang, et al. Propagation properties of an intense laser pulse in partially stripped plasma[J]. High Power Laser and Particle Beams, 2014, 26: 072006 doi: 10.11884/HPLPB201426.072006
    [9] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变[J]. 物理学报, 2016, 65:040201. (Cui Shaoyan, Lü Xinxin, Xin Jie. Collapse and evolution of wave field based on a generalized nonlinear Schrödinger equation[J]. Acta Physica Sinica, 2016, 65: 040201 doi: 10.7498/aps.65.040201
    [10] 刘笑兰, 李晓卿. 超强激光等离子体中的相对论性朗缪尔孤子[J]. 激光技术, 2013, 37(5):627-630. (Liu Xiaolan, Li Xiaoqing. Relativistic Langmuir solitons in ultrapowerful laser plasma[J]. Laser Technology, 2013, 37(5): 627-630 doi: 10.7510/jgjs.issn.1001-3806.2013.05.014
    [11] Dewan H, Uma R, Sharma R P. Generation of kinetic Alfvén wave and whistler waves by parametric decay of high power laser in laser–plasma interaction[J]. Physics of Plasmas, 2020, 27: 032111. doi: 10.1063/1.5139302
    [12] Wu Dong, Yu W, Fritzsche S, et al. Formation of relativistic electromagnetic solitons in over-dense plasmas[J]. Physics of Plasmas, 2019, 27: 063107.
    [13] Korobkin V V, Serov R V. Investigation of the magnetic field of a spark produced by focusing laser radiation[J]. Journal of Experimental and Theoretical Physics Letters, 1966, 4: 70-72.
    [14] Liu Shanqiu, Li Xiaoqing. Self-generated magnetic field by transverse plasmons in laser-produced plasma[J]. Physics of Plasmas, 2000, 7(8): 3405-3412. doi: 10.1063/1.874204
    [15] Rao N N, Shukla P K, Yu M Y. Strong electromagnetic pulses in magnetized plasmas[J]. The Physics of Fluids, 1984, 27(11): 2664-2668. doi: 10.1063/1.864568
    [16] Zank G P, Greaves R G. Linear and nonlinear modes in nonrelativistic electron-positron plasmas[J]. Physical Review E, 1995, 51(6): 6079-6090. doi: 10.1103/PhysRevE.51.6079
    [17] Jha P, Kumar P, Raj G, et al. Modulation instability of laser pulse in magnetized plasma[J]. Physics of Plasmas, 2005, 12: 123104. doi: 10.1063/1.2141399
    [18] Mushtaq A, Saeed R, Haque Q, et al. Ion acoustic solitary waves in magnetized pair-ion electron plasmas[J]. Physics of Plasmas, 2009, 16: 084501. doi: 10.1063/1.3206659
    [19] Shen Baifei, Yu M Y, Li Ruxin. Ultrashort relativistic electromagnetic solitons[J]. Physical Review E, 2004, 70: 036403. doi: 10.1103/PhysRevE.70.036403
    [20] Chen Huaying, Liu Sanqiu, Li Xiaoqing. Modulation instability by intense laser beam in magnetized plasma[J]. Optik, 2011, 122(7): 599-603. doi: 10.1016/j.ijleo.2010.04.019
    [21] 阮诗森. 磁化等离子体中非线性波特性的研究[D]. 武汉: 华中科技大学, 2014: 12-14

    Ruan Shisen. Investigation on the properties of nonlinear waves in magnetized plasmas[D]. Wuhan: Huazhong University of Science and Technology, 2014: 12-14
    [22] Weng Suming, Zhao Qian, Sheng Zhengming, et al. Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas[J]. Optica, 2017, 4(9): 1086-1091. doi: 10.1364/OPTICA.4.001086
    [23] Zheng Xiaolong, Weng Suming, Zhang Zhe, et al. Simultaneous polarization transformation and amplification of multi-petawatt laser pulses in magnetized plasmas[J]. Optics Express, 2019, 27(14): 19319-19330. doi: 10.1364/OE.27.019319
    [24] Karpman V I, Krushkal E M. Modulated waves in nonlinear dispersive media[J]. Soviet Physics JETP, 1969, 28(2): 277-281.
  • 加载中
图(8)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  201
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 修回日期:  2021-12-12
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回