留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温合金不同脉宽超快激光作用下多脉冲去除阈值

高云 杨泽南 宋成伟 张远航 张健 张清华 刘民才 李亚国

高云, 杨泽南, 宋成伟, 等. 高温合金不同脉宽超快激光作用下多脉冲去除阈值[J]. 强激光与粒子束, 2022, 34: 041005. doi: 10.11884/HPLPB202234.210341
引用本文: 高云, 杨泽南, 宋成伟, 等. 高温合金不同脉宽超快激光作用下多脉冲去除阈值[J]. 强激光与粒子束, 2022, 34: 041005. doi: 10.11884/HPLPB202234.210341
Gao Yun, Yang Zenan, Song Chengwei, et al. Multi-pulses ablation threshold of Ni-based superalloy irradiated by ultrafast laser with different pulse duration[J]. High Power Laser and Particle Beams, 2022, 34: 041005. doi: 10.11884/HPLPB202234.210341
Citation: Gao Yun, Yang Zenan, Song Chengwei, et al. Multi-pulses ablation threshold of Ni-based superalloy irradiated by ultrafast laser with different pulse duration[J]. High Power Laser and Particle Beams, 2022, 34: 041005. doi: 10.11884/HPLPB202234.210341

高温合金不同脉宽超快激光作用下多脉冲去除阈值

doi: 10.11884/HPLPB202234.210341
基金项目: 中国工程物理研究院创新发展基金项目(CX2019025);中国工程物理研究院激光聚变研究中心青年人才基金项目(LFRC-PD012)
详细信息
    作者简介:

    高 云,2273792187@qq.com

    通讯作者:

    李亚国,yargolee@163.com

  • 中图分类号: V261.8

Multi-pulses ablation threshold of Ni-based superalloy irradiated by ultrafast laser with different pulse duration

  • 摘要: 实验研究了激光脉冲宽度和脉冲个数对镍基高温合金材料去除阈值的影响,分别在290 fs,1 ps和7 ps脉宽的激光下,使用1,10,50,100,300,500和1000个不同能量的激光脉冲辐照高温合金样品表面。实验结果表明,烧蚀坑尺寸会随脉冲数的增加而增加,而脉冲宽度的增加会加大脉冲个数对烧蚀坑直径的影响。通过烧蚀坑直径的平方值与激光脉冲能量之间存在的对数关系,得到了不同脉冲宽度下镍基高温合金的多脉冲材料阈值。3种不同脉宽下的高温合金多脉冲去除阈值都存在显著的累积效应。根据去除阈值计算得到290 fs,1 ps和7 ps脉宽下的累积效应系数分别为0.88,0.86和0.78。
  • 图  1  高温合金样品表面磨抛前后的粗糙度测试结果

    Figure  1.  Surface roughness test results of superalloy samples

    图  2  超快脉冲激光加工系统示意图

    Figure  2.  Schematic diagram of ultrashort pulse laser processing system

    图  3  脉宽为290 fs时,100个不同脉冲能量的激光脉冲辐照后的烧蚀坑形貌

    Figure  3.  Morphologies of ablation holes irradiated by 100 laser pulses with a pulse width 290 fs at different pulse energy

    (w represents ablation hole diameter)

    图  4  高温合金表面在不同脉宽的超快激光作用下形成的烧蚀坑直径与激光能量的关系曲线

    Figure  4.  Curves of ablation hole diameter vs laser energy for the superalloy surface after the irradiation of ultrafast laser with different pulse duration

    图  5  高温合金表面在不同脉宽的超快激光作用下形成的烧蚀坑直径的平方值与激光能量的关系曲线

    Figure  5.  Curves of square of ablation hole diameter vs laser energy for the superalloy surface irradiated by ultrafast laser with different pulse duration

    图  6  不同脉宽下的高温合金去除阈值和脉冲数的关系曲线

    Figure  6.  Curves of the ablation threshold vs number of pulses

    表  1  实验中使用的高温合金样品的元素组成

    Table  1.   Elemental composition of Ni-based superalloy sample

    elementatom fraction/%
    Ni50.08
    C24.68
    Al8.76
    Co7.45
    Cr3.83
    Si3.04
    O1.58
    Mo0.58
    下载: 导出CSV

    表  2  不同脉宽的脉冲激光作用下的高温合金的多脉冲去除阈值

    Table  2.   Multi-pulse ablation thresholds of Ni-based superalloy irradiated by ultrafast lasers with different pulse durations

    pulse duration/fsmaterial removal threshold/(J·cm−2)
    110501003005001000
    2900.1010.0790.0580.0540.0490.0490.047
    10000.1060.0710.0550.0500.0460.0420.042
    70000.1290.0940.0610.0500.0370.0340.031
    下载: 导出CSV

    表  3  不同脉宽下多脉冲去除阈值的累积效应系数

    Table  3.   Incubation coefficient values corresponding to different pulse durations

    pulse duration/fsincubation coefficient ξ
    2900.88
    10000.86
    70000.78
    下载: 导出CSV
  • [1] 周明, 杨青峰, 张洪玉. 航空涡轮叶片气膜冷却孔激光加工技术进展[J]. 中国基础科学, 2016, 18(5):35-42. (Zhou Ming, Yang Qingfeng, Zhang Hongyu. Advances in laser fabrication of the aeroengine blades' film cooling holes[J]. China Basic Science, 2016, 18(5): 35-42 doi: 10.3969/j.issn.1009-2412.2016.05.004
    [2] 张晓兵. 激光加工涡轮叶片气膜孔的现状及发展趋势[J]. 应用激光, 2002, 22(2):227-229,246. (Zhang Xiaobing. The present state and perspective of laser drilling technology in turbine blades[J]. Applied Laser, 2002, 22(2): 227-229,246 doi: 10.3969/j.issn.1000-372X.2002.02.039
    [3] Bandyopadhyay S, Sundar J K S, Sundararajan G, et al. Geometrical features and metallurgical characteristics of Nd: YAG laser drilled holes in thick IN718 and Ti–6Al–4V sheets[J]. Journal of Materials Processing Technology, 2002, 127(1): 83-95. doi: 10.1016/S0924-0136(02)00270-4
    [4] 刘丹, 孔德新, 苗在强, 等. 钛合金纳秒激光打孔数值模拟和实验研究[J]. 强激光与粒子束, 2018, 30:069001. (Liu Dan, Kong Dexin, Miao Zaiqiang, et al. Simulation and experimental investigation on nano-second pulsed laser drilling of titanium alloy[J]. High Power Laser and Particle Beams, 2018, 30: 069001 doi: 10.11884/HPLPB201830.170386
    [5] Ancona A, Döring S, Jauregui C, et al. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers[J]. Optics Letters, 2009, 34(21): 3304-3306. doi: 10.1364/OL.34.003304
    [6] Zhang Wei, Cheng Guanghua, Feng Qiang, et al. Femtosecond laser machining characteristics in a single-crystal superalloy[J]. Rare Metals, 2011, 30(s1): 639-642. doi: 10.1007/s12598-011-0362-z
    [7] Kerse C, Kalaycıoğlu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88. doi: 10.1038/nature18619
    [8] 纪亮, 张晓兵, 张伟, 等. DD6镍基单晶合金的纳秒及皮秒激光烧蚀和制孔研究[J]. 应用激光, 2014, 34(6):551-556. (Ji Liang, Zhang Xiaobing, Zhang Wei, et al. Laser-induced ablation and laser drilling of DD6 nickel-based single-crystal alloy by nanosecond and picosecond lasers[J]. Applied Laser, 2014, 34(6): 551-556 doi: 10.3788/AL20143406.551
    [9] Petronić S, Milosavljević A, Radaković Z, et al. Analysis of geometrical characteristics of pulsed ND: YAG laser drilled holes in superalloy Nimonic 263 sheets[J]. Tehnički Vjesnik, 2010, 17(1): 61-66.
    [10] Das D K, Pollock T M. Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy[J]. Journal of Materials Processing Technology, 2009, 209(15/16): 5661-5668.
    [11] Weck A, Crawford T H R, Wilkinson D S, et al. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses[J]. Applied Physics A, 2008, 90(3): 537-543. doi: 10.1007/s00339-007-4300-6
    [12] Kirkwood S E, van Popta A C, Tsui Y Y, et al. Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper[J]. Applied Physics A, 2005, 81(4): 729-735. doi: 10.1007/s00339-004-3135-7
    [13] Mannion P T, Magee J, Coyne E, et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J]. Applied Surface Science, 2004, 233(1/4): 275-287.
    [14] Di Niso F, Gaudiuso C, Sibillano T, et al. Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel[J]. Physics Procedia, 2013, 41: 698-707. doi: 10.1016/j.phpro.2013.03.136
    [15] Le Harzic R, Breitling D, Weikert M, et al. Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses[J]. Applied Physics A, 2005, 80(7): 1589-1593. doi: 10.1007/s00339-005-3206-4
    [16] Feng Q, Picard Y N, Liu H, et al. Femtosecond laser micromachining of a single-crystal superalloy[J]. Scripta Materialia, 2005, 53(5): 511-516. doi: 10.1016/j.scriptamat.2005.05.006
    [17] Semaltianos N G, Perrie W, French P, et al. Femtosecond laser ablation characteristics of nickel-based superalloy C263[J]. Applied Physics A, 2009, 94(4): 999-1009. doi: 10.1007/s00339-008-4885-4
    [18] Semaltianos N G, Perrie W, Cheng J, et al. Picosecond laser ablation of nickel-based superalloy C263[J]. Applied Physics A, 2010, 98(2): 345-355. doi: 10.1007/s00339-009-5399-4
    [19] Miotello A, Kelly R. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature[J]. Applied Physics A, 1999, 69(7): S67-S73. doi: 10.1007/s003390051357
    [20] 李莉, 张端明, 房然然, 等. 飞秒多脉冲激光烧蚀金属过程中的能量剩余现象[J]. 强激光与粒子束, 2009, 21(11):1671-1676. (Li Li, Zhang Duanming, Fang Ranran, et al. Residual energy in femtosecond multipulse laser ablation of metal[J]. High Power Laser and Particle Beams, 2009, 21(11): 1671-1676
    [21] Byskov-Nielsen J, Savolainen J M, Christensen M S, et al. Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates[J]. Applied Physics A, 2010, 101(1): 97-101. doi: 10.1007/s00339-010-5766-1
    [22] 陈安民, 姜远飞, 刘航, 等. 双温方程用于飞秒激光烧蚀金属的模拟分析[J]. 激光与红外, 2012, 42(8):847-851. (Chen Anming, Jiang Yuanfei, Liu Hang, et al. Numerical simulation of femtosecond laser ablation by two-temperature model[J]. Laser & Infrared, 2012, 42(8): 847-851 doi: 10.3969/j.issn.1001-5078.2012.08.001
    [23] 邓素辉, 陶向阳, 刘明萍, 等. 飞秒-纳秒脉冲激光烧蚀金属热效应分析[J]. 激光技术, 2007, 31(1):4-7. (Deng Suhui, Tao Xiangyang, Liu Mingping, et al. Thermal analysis of metal ablation by means of femtosecond-to-nanosecond laser pulses[J]. Laser Technology, 2007, 31(1): 4-7 doi: 10.3969/j.issn.1001-3806.2007.01.024
    [24] Ni Xiaocheng, Wang C Y, Yang Li, et al. Parametric study on femtosecond laser pulse ablation of Au films[J]. Applied Surface Science, 2006, 253(3): 1616-1619. doi: 10.1016/j.apsusc.2006.02.053
    [25] 邵俊峰, 郭劲, 王挺峰. 飞秒双脉冲激光照射金属薄膜的热行为[J]. 强激光与粒子束, 2014, 26:091017. (Shao Junfeng, Guo Jin, Wang Tingfeng. Thermal behavior of metal thin film irradiated by femtosecond double-pulse laser[J]. High Power Laser and Particle Beams, 2014, 26: 091017 doi: 10.11884/HPLPB201426.091017
    [26] Harilal S S, Diwakar P K, Hassanein A. Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 2013, 103: 041102. doi: 10.1063/1.4816348
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  935
  • HTML全文浏览量:  366
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 修回日期:  2022-01-11
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回