留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC光导开关衬底与电极界面场强仿真与优化设计

罗燕 丁蕾 赵毅 姚崇斌 王立春

罗燕, 丁蕾, 赵毅, 等. SiC光导开关衬底与电极界面场强仿真与优化设计[J]. 强激光与粒子束, 2022, 34: 063004. doi: 10.11884/HPLPB202234.210360
引用本文: 罗燕, 丁蕾, 赵毅, 等. SiC光导开关衬底与电极界面场强仿真与优化设计[J]. 强激光与粒子束, 2022, 34: 063004. doi: 10.11884/HPLPB202234.210360
Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004. doi: 10.11884/HPLPB202234.210360
Citation: Luo Yan, Ding Lei, Zhao Yi, et al. Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 063004. doi: 10.11884/HPLPB202234.210360

SiC光导开关衬底与电极界面场强仿真与优化设计

doi: 10.11884/HPLPB202234.210360
基金项目: 国防科工局基础科研项目
详细信息
    作者简介:

    罗 燕,luoyan1120@qq.com

  • 中图分类号: TN256

Optimization design and simulation of electric field at interface between substrate and electrode of photoconductive switch

  • 摘要: 研究电极结构、SiC与电极连接结构对界面场强的影响,通过电极边缘以及SiC晶体结构的优化降低界面处的电场增强,并通过高压试验测试优化电极结构的击穿电压。结果表明,优化电极倒角以及SiC晶体与电极的界面下埋可有效降低电场增强,在电极为圆倒角及界面使用焊料连接的结构下,使用介质环的器件在电压22 kV时击穿。
  • 图  1  异面正对结构光导开关

    Figure  1.  Photoconductive switch with opposite electrodes

    图  2  介质环电极封装结构

    Figure  2.  Dielectric ring electrode package structure

    图  3  器件模型示意图

    Figure  3.  Diagram of device model

    图  4  圆柱电极结构尺寸

    Figure  4.  Electric field intensity distribution

    图  5  不同圆柱电极结构场强

    Figure  5.  Electric field intensity of different cylindrical electrode structures

    图  6  电场强度分布图

    Figure  6.  Electric field intensity distribution

    图  7  界面加焊料后电场强度分布图

    Figure  7.  Electric field intensity distribution with solder interface

    图  8  不同焊料厚度电场最大值

    Figure  8.  Maximum electric field intensity under different solder thickness

    图  9  绝缘介质介电常数30的电场分布

    Figure  9.  Electric field distribution of dielectric constant 30 of insulating medium

    图  10  静态高压试验现场图

    Figure  10.  Static high voltage test

    表  1  介质环绝缘材料性能表

    Table  1.   Insulation material performance

    materialdielectric strength/(kV·mm−1)dielectric constantthermal conductivity/(W·m−1·K−1)CTE/(K−1)
    CVD diamond 1000 5.7 1000~2000 1.1×10−6
    fused silica 25~40 3.75 1.3 0.55×10−6
    undoped SiC 300 10 300~500 4.0×10−6
    AlN 17 9 140~180 4.5×10−6
    epoxy glue 20~40 3.8~6.2 1.1 (20~60)×10−6
    Al2O3 16.9 9.8 35 8.4×10−6
    silicone 30~40 2.5~4 1.2 300×10−6
    ZrO2 9 29 2.2 10.3×10−6
    下载: 导出CSV

    表  2  不同介电常数绝缘介质环材料最大场强

    Table  2.   Maximum electric field intensity of different dielectric constant insulation rings

    materialdielectric constantmaximum electric field /(kV·mm−1)
    thickness of the solder is 0.03 mmthickness of the solder is 0.02 mm
    CVD diamond5.739.736.8
    Al2O3937.132.1
    undoped SiC、AlN1034.427.6
    CdWO412.832.328.9
    MnWO41530.427.3
    ZnWO417.627.726.1
    CoNb2O62027.225.7
    Ba5Ta4O152624.024.1
    ZrO23024.822.0
    ZrO23224.223.5
    下载: 导出CSV
  • [1] 张永平. 碳化硅光导开关的制备与性能研究[D]. 上海: 上海师范大学, 2014: 10-40

    Zhang Yongping. Preparation and properties of SiC photoconductive switch[D]. Shanghai: Shanghai Normal University, 2014: 10-40
    [2] Cui H, Yang H, Xu J, et al. Sublinear current-voltage characteristics of linear photoconductive semiconductor switch[J]. IEEE Electr Device L, 2016: 1-1.
    [3] 宋朝阳. 半绝缘4H-SiC光导开关研究[D]. 西安: 西安电子科技大学, 2015: 20-30

    Song Chaoyang. Study on semi-insulating 4H-SiC PCSS[D]. Xian: Xidian University, 2015: 20-30
    [4] Cao P, Huang W, Guo H, et al. Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector[J]. IEEE T Electron Dev, 2018, 65(5): 2047-2051. doi: 10.1109/TED.2018.2815634
    [5] Daniel M, William S, Alan B, et al. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms[J]. IEEE T Plasma Sci, 2015, 43(6): 2021-2031. doi: 10.1109/TPS.2015.2424154
    [6] Sampayan S, Bora M, Brooksby C, et al. High voltage wide bandgap photoconductive switching[J]. Mater Sci Forum, 2015, 821-823: 871-874. doi: 10.4028/www.scientific.net/MSF.821-823.871
    [7] Suproniuk M, Kaminski P, Pawlowski M, et al. Current status of modelling the semi-insulating 4H-SiC transient photoconductivity for application to photoconductive switches[J]. Opto-Electron. Rev, 2017, 25(3): 171-180. doi: 10.1016/j.opelre.2017.03.006
    [8] 董妍. 高功率光导开关的研究[D]. 成都: 电子科技大学, 2018: 10-30

    Dong Yan. Research on high power photoconductive semiconductor switch[D]. Chengdu: University of Electronic Science and Technology, 2018: 10-30.
    [9] Majda E, Suproniuk M, Pawlowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electron Rev, 2018, 26: 92-102. doi: 10.1016/j.opelre.2018.02.003
    [10] 许世峰, 何晓雄, 孙飞翔. 光导开关欧姆接触电阻率测量方法研究[J]. 合肥工业大学学报(自然科学版), 2016, 39(7):929-933. (Xu Shifeng, He Xiaoxiong, Sun Feixiang. Research on measurement methods of ohmic contact resistivity of PCSS[J]. Journal of Heifei University of Techonology (Natural Science), 2016, 39(7): 929-933
    [11] Hettler C, James C, Dickens J. High electric field packaging of silicon carbide photoconductive switches[C]//Proc of PPC. 2009.
    [12] Fessler C, Kelkar K, Nunnally W, et al. Investigation of high electric fields at the electrode-SiC interface in photo-switches[C]//Proc of PPC. 2008.
    [13] 曹鹏辉. 采用透明电极的垂直型4H-SiC光导开关的研究[D]. 西安: 西安电子科技大学, 2017: 20-40

    Cao Penghui. Research on vertical 4H-SiC PCSS with transparent electrode[D]. Xian: Xidian University, 2017: 20-40
    [14] Sullivan J. High power operation of a nitrogen doped, vanadium compensated, 6H-SiC extrinsic photoconductive switch[J]. Appl Phys Lett, 2014, 104(17): 172106. doi: 10.1063/1.4875258
    [15] 章林文, 夏连胜, 谌怡, 等. 介质壁加速器关键技术[J]. 高电压技术, 2015, 41(6):1769-1775. (Zhang Linwen, Xis Liansheng, Shen Yi, et al. Technologies of dielectric wall accelerator[J]. High Voltage Engineering, 2015, 41(6): 1769-1775
    [16] James C, Hettler C, Dickens J. High-purity semi-insulating 4H-SiC as a high-voltage switch material[C]//Proc of IPMC. 2010.
    [17] 董妍. 高功率光导开关的研究[D]. 成都: 电子科技大学, 2018: 1-11

    Dong Yan. Research on high power photoconductive semiconductor switch[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 1-11
    [18] 刘金进. 碳化硅光导开关耐压结构设计与仿真研究[D]. 上海: 上海师范大学, 2021: 6-12

    Liu Jinjin. Design and simulation of silicon carbide photoconductive semiconductor switches withstanding high voltage[D]. Shanghai: Shanghai Normal University, 2021: 6-12
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  728
  • HTML全文浏览量:  396
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 修回日期:  2021-12-31
  • 录用日期:  2022-01-24
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回