留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PCM软件包燃料组件弯曲模型的开发及验证

厉井钢 王超 陈俊 彭靖含

厉井钢, 王超, 陈俊, 等. PCM软件包燃料组件弯曲模型的开发及验证[J]. 强激光与粒子束, 2022, 34: 026004. doi: 10.11884/HPLPB202234.210378
引用本文: 厉井钢, 王超, 陈俊, 等. PCM软件包燃料组件弯曲模型的开发及验证[J]. 强激光与粒子束, 2022, 34: 026004. doi: 10.11884/HPLPB202234.210378
Li Jinggang, Wang Chao, Chen Jun, et al. Development and verification of fuel assembly bowing model in software package PCM[J]. High Power Laser and Particle Beams, 2022, 34: 026004. doi: 10.11884/HPLPB202234.210378
Citation: Li Jinggang, Wang Chao, Chen Jun, et al. Development and verification of fuel assembly bowing model in software package PCM[J]. High Power Laser and Particle Beams, 2022, 34: 026004. doi: 10.11884/HPLPB202234.210378

PCM软件包燃料组件弯曲模型的开发及验证

doi: 10.11884/HPLPB202234.210378
基金项目: 国家重点研发计划项目(2020YFB1902004)
详细信息
    作者简介:

    厉井钢,lijinggang@cgnpc.com.cn

  • 中图分类号: TL329

Development and verification of fuel assembly bowing model in software package PCM

  • 摘要: 燃料组件在反应堆内受压紧力等作用会发生弯曲,该弯曲会显著改变反应堆局部位置的中子慢化。基于中广核核设计软件包PCM中的组件中子截面计算软件PINE和堆芯核设计软件COCO,开发了专门的燃料组件弯曲模型,以分析燃料组件弯曲对堆芯局部功率分布的影响,并和蒙特卡罗软件JMCT做了对比验证计算。计算结果表明,PCM软件包燃料组件弯曲模型的计算结果与JMCT吻合良好,该软件包可以用于燃料组件弯曲的分析计算。燃料组件的弯曲对于堆芯的局部功率分布有显著的影响,需要在设计中予以特别关注。
  • 图  1  燃料组件及边缘水隙分布

    Figure  1.  Fuel assembly and boundary water gap

    图  2  燃料组件节块划分的径向模拟

    Figure  2.  Radial modeling of fuel assembly node

    图  3  燃料棒功率分布的比较(1/8对称)

    Figure  3.  Fuel rod power distribution (1/8 symmetry)

    图  4  堆芯布置分布图

    Figure  4.  Core configuration

    图  5  正常水隙下K03位置组件左上角1/4区域燃料棒功率分布对比

    Figure  5.  Fuel rod power distribution at K03 under normal water gap

    (a) the first value in the square is the calculation results from COCO and the second value is from JMCT;(b) shows the difference defined as (JMCT - COCO)/COCO

    图  6  水隙增大后K03位置组件左上角1/4区域燃料棒功率分布对比

    Figure  6.  Fuel rod power distribution at K03 under increased water gap

    (a) the first value in the square is the calculation results from COCO and the second value is from JMCT; (b) shows the difference defined as (JMCT - COCO)/COCO

    表  1  燃料组件主要参数

    Table  1.   Fuel assembly main parameters

    enrichment/%assembly configurationnormal water gap/mmincreased water gap/mm
    4.45 17×17 0.76 3.80
    下载: 导出CSV

    表  2  燃料组件均匀化中子截面的比较

    Table  2.   Homogeneous neutron cross section of fuel assembly

    fast group
    transport cross
    section/cm−1
    thermal group
    transport cross
    section/cm−1
    fast group
    absorption cross
    section/cm−1
    thermal group
    absorption cross
    section/cm−1
    fast group
    fission cross
    section/cm−1
    thermal group
    fission cross
    section/cm−1
    case 1 2.37744×10−1 8.80051×10−1 9.99930×10−3 1.04927×10−1 3.24601×10−3 7.22189×10−2
    Case 2 2.35261×10−1 9.07776×10−1 9.48205×10−3 9.92312×10−2 3.06870×10−3 6.71697×10−2
    case 3 2.36489×10−1 8.94271×10−1 9.73666×10−3 1.02015×10−1 3.15638×10−3 6.96360×10−2
    results from Eq.(2) 2.36460×10−1 8.94392×10−1 9.73174×10−3 1.01981×10−1 3.15429×10−3 6.96071×10−2
    difference 0.012% −0.014% 0.051% 0.034% 0.066% 0.042%
    下载: 导出CSV
  • [1] 李伟才, 肖忠. 压水堆燃料组件弯曲变形机理及规避措施[J]. 核动力工程, 2008, 29(2):55-57. (Li Weicai, Xiao Zhong. Mechanism fuel assembly bowing preventive measures[J]. Nuclear Power Engineering, 2008, 29(2): 55-57
    [2] Franzen A. Evaluation of fuel assembly bow penalty peaking factors for Ringhals 3 – Based on a cycle specific core water gap distribution[D]. Uppsala Universitet, 2017.
    [3] Rochman D, Mala P, Ferroukhi H, et al. Bowing effects on power and burn-up distributions for simplified full PWR and BWR cores[C]//International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering. 2017.
    [4] Chionis D, Dokhane A, Belblidia L, et al. Development and verification of a methodology for neutron noise response to fuel assembly vibrations[J]. Annals of Nuclear Energy, 2020, 147: 17669-107683.
    [5] Yamamoto A, Endo T, Nagano H, et al. A simple treatment of increased gap due to fuel assembly bowing through correction of cross sections[J]. Journal of Nuclear Science and Technology, 2019.
    [6] Franceschini F, Fetterman R, Little D. Modification of the ANC nodal code for analysis of PWR assembly bow[C]//Proc PHYSOR. 2008.
    [7] Fetterman R, Franceschini F. Analysis of PWR assembly bow[C]//Proc PHYSOR. 2008.
    [8] 卢皓亮, 莫锟, 李文淮, 等. 自主化堆芯三维核设计软件COCO研发[J]. 原子能科学技术, 2013, 47(s1):327-330. (Lu Haoliang, Mo Kun, Li Wenhuai, et al. Development of self-reliant three-dimensional core nuclear design code COCO[J]. Atomic Energy Science and Technology, 2013, 47(s1): 327-330
    [9] 卢皓亮, 陈俊, 王军令, 等. 自主化堆芯核设计软件COCO验证与确认[J]. 原子能科学技术, 2017, 51(8):1460-1463. (Lu Haoliang, Chen Jun, Wang Junling, et al. Verification and validation of self-reliant core nuclear design code COCO[J]. Atomic Energy Science and Technology, 2017, 51(8): 1460-1463
    [10] 邓力, 雷炜, 李刚, 等. 高分辨率粒子输运MC软件JMCT开发[J]. 核动力工程, 2014, 35(S2):221-223. (Deng Li, Lei Wei, Li Gang, et al. Development of high resolution particle transport Monte Carlo code JMCT[J]. Nuclear Power Engineering, 2014, 35(S2): 221-223
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  693
  • HTML全文浏览量:  236
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-10-21
  • 录用日期:  2021-12-06
  • 网络出版日期:  2021-12-11
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回