留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于运行反馈的压水堆氚排放量研究

付鹏涛 代明亮 祝兆文 刘新华 方岚 徐春艳

付鹏涛, 代明亮, 祝兆文, 等. 基于运行反馈的压水堆氚排放量研究[J]. 强激光与粒子束, 2022, 34: 026009. doi: 10.11884/HPLPB202234.210399
引用本文: 付鹏涛, 代明亮, 祝兆文, 等. 基于运行反馈的压水堆氚排放量研究[J]. 强激光与粒子束, 2022, 34: 026009. doi: 10.11884/HPLPB202234.210399
Fu Pengtao, Dai Mingliang, Zhu Zhaowen, et al. Study of annual tritium discharge in pressurized water reactor based on historical data[J]. High Power Laser and Particle Beams, 2022, 34: 026009. doi: 10.11884/HPLPB202234.210399
Citation: Fu Pengtao, Dai Mingliang, Zhu Zhaowen, et al. Study of annual tritium discharge in pressurized water reactor based on historical data[J]. High Power Laser and Particle Beams, 2022, 34: 026009. doi: 10.11884/HPLPB202234.210399

基于运行反馈的压水堆氚排放量研究

doi: 10.11884/HPLPB202234.210399
基金项目: 中国广核集团专项基金项目
详细信息
    作者简介:

    付鹏涛,fupengtao@cgnpc.com.cn

  • 中图分类号: TL38+2

Study of annual tritium discharge in pressurized water reactor based on historical data

  • 摘要: 以压水堆核电厂中氚的产生机理和氚源项计算模型为基础,结合对国内外大量压水堆核电厂的氚排放运行数据的系统性分析,识别出冷却剂硼酸活化和次级中子源活化是压水堆氚排放量的主要来源,其中对中国广核集团运行机组,锑铍中子活化后的产氚量对氚年排放量的贡献可达到40%,而氚从完整的锆合金包壳的燃料棒中的释放是可以忽略不计的。由于优化次级中子源是降低压水堆氚排放量的唯一有效措施,通过分析建议压水堆核电厂采用双层不锈钢包壳的次级中子源或者取消次级中子源以降低压水堆氚排放。
  • 图  1  四分之一反应堆JMCT模型

    Figure  1.  Quarter reactor JMCT model

    图  2  硼锂产氚模型的计算值与测量值的比较

    Figure  2.  Comparison between calculated and measured values of tritium production by neutron activation

    图  3  燃料模型(1%释放)氚排放量计算值与测量值的比较

    Figure  3.  Comparison between calculated and measured values of tritium production (1% released from fuel)

    图  4  大亚湾核电厂氚源项的计算值和实测值的对比

    Figure  4.  Comparison between calculated and measured values of tritium production of Daya Bay Nuclear Power Plant

    图  5  双层不锈钢包壳的次级中子源的截面示意图

    Figure  5.  Schematic diagram of SNS in double-layer stainless steel cladding

    图  6  法国某900 MWe机组的氚排放量变化

    Figure  6.  Variation of tritium discharge from French 900 MWe PWR

    表  1  压水堆核电厂中产生氚的核反应

    Table  1.   Nuclear reaction of tritium production in PWR

    regionnuclear reaction
    fuel $ {\text{U/Pu}} + {}_0^1{\text{n}}\xrightarrow{{}}{\text{FP1 + FP2}} + {}_1^3{\text{H}} $
    boric acid
    (primary coolant)
    $ {}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{({\text{n,2α}} )}}}{\text{2}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    $ {}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{2}}^{\text{4}}{\text{He}} $ ⇨ $ {}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    $ {}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{2}}^{\text{4}}{\text{He}} $ ⇨ $ {}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    $ {}_{\text{5}}^{{\text{11}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{1}}^{\text{3}}{\text{H}} $ ⇨ $ {}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{2}}^{\text{6}}{\text{He}} $
    ⇨ $ {}_{\text{2}}^{\text{6}}{\text{He}}\xrightarrow{{\text{β }}}{}_{\text{3}}^{\text{6}}{\text{Li + }}_{ - 1}^{\text{0}}{\text{e}} $ ⇨ $ {}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    $ {}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{1}}^{\text{3}}{\text{H}} $ ⇨ $ {}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    lithium hydroxide
    (primary coolant)
    $ {}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    $ {}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    deuterium
    (primary coolant)
    $ {}_{\text{1}}^{\text{2}}{\text{H + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,γ )}}}}{}_{\text{1}}^{\text{3}}{\text{H}} $
    antimony-beryllium in SNS $ {}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{2}}^{\text{6}}{\text{He}} $ ⇨ $ {}_{\text{2}}^{\text{6}}{\text{He}}\xrightarrow{{\text{β }}}{}_{\text{3}}^{\text{6}}{\text{Li}} $ ⇨ $ {}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    $ {}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{1}}^{\text{3}}{\text{H}} $ ⇨ $ {}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    下载: 导出CSV

    表  2  不同堆型的预期氚产生量的相对贡献

    Table  2.   Relative contribution of expected tritium production in different reactor

    originrelative contribution/%
    EPRAP1000VVER
    fuel03122
    boric acid and lithium hydroxide836977
    SNS170
    total100100100
    下载: 导出CSV
  • [1] IAEA. Management of waste containing tritium and carbon-14[R]. Technical Reports Series No. 421, 2004: 28-35.
    [2] Bechtold T E, Dyer N C. Radionuclides in United States commercial nuclear power reactors[R]. WINCO-1191, 1994: 6-25.
    [3] ASN. Groupes de réflexion menés de mai 2008 à avril 2010 sous l'égide de l'ASN et Bilan annuel des rejets de tritium pour les installations nucléaire de base de 2015 à 2019[R]. 2019: 4-241.
    [4] Jacobs D G. Sources of tritium and its behavior upon release to the environment[R]. TID-24635, 1968: 21-22.
    [5] 杨茂春. 压水堆核电站氚的辐射风险分析[J]. 辐射防护通讯, 2000, 20(3):1-6. (Yang Maochun. Radiation risk analysis of tritium in PWR nuclear power plants[J]. Radiation Protection Bulletin, 2000, 20(3): 1-6
    [6] Locante J. Tritium in pressurized water reactors[J]. Transactions of the American Nuclear Society, 1971, 14(1): 161-162.
    [7] Phillips J E, Easterly C E. Sources of tritium[R]. ORNL/TM-6402, 1980: 4-8.
    [8] Hussey D, Saunders P, Morey D, et al. Modeling tritium life cycle in nuclear plants[C]//Proceedings of the Waste Management 2006 Symposium. 2006.
    [9] Jones G. Tritium issues in commercial pressurized water reactors[J]. Fusion Science and Technology, 2008, 54(2): 329-332. doi: 10.13182/FST08-A1824
    [10] 单陈瑜, 石秀安, 蔡德昌, 等. 大亚湾和岭澳一期核电站氚年排放量计算分析[J]. 核科学与工程, 2013, 33(1):31-37. (Shan Chenyu, Shi Xiuan, Cai Dechang, et al. Analysis and calculation of annual emissions of tritium for Daya Bay and Ling Ao nuclear power plants[J]. Nuclear Science and Engineering, 2013, 33(1): 31-37 doi: 10.3969/j.issn.0258-0918.2013.01.007
    [11] 付鹏涛, 蔡德昌, 李志军. 基于CPR1000的压水堆氚排放量研究[C]//第十七届反应堆数值计算与粒子输运学术会议CORPHY暨2018年反应堆物理会议(CORPHY-2018). 2018

    Fu Pengtao, Cai Dechang, Li Zhijun. Study of tritium production based on CPR1000 discharge[C]//CORPHY-2018.2018
    [12] 彭思涛, 王超, 赵焱, 等. 中广核自主燃耗计算软件PALM研发[C]//第十七届反应堆数值计算与粒子输运学术会议CORPHY暨2018年反应堆物理会议(CORPHY-2018). 2018

    Peng Sitao, Wang Chao, Zhao Yan, et al. Development of the CGN burnup code PALM[C]//CORPHY-2018.2018
    [13] 刘鹏, 史敦福, 李康, 等. JMCT与子通道程序耦合方法研究及验证[J]. 强激光与粒子束, 2018, 30:016010. (Liu Peng, Shi Dunfu, Li Kang, et al. Research and validation on coupling method of JMCT and subchannel code[J]. High Power Laser and Particle Beams, 2018, 30: 016010 doi: 10.11884/HPLPB201830.170252
    [14] Bouhrizi S. GDA UK EPR–BAT demonstration[R]. UKEPR-0011-001 Issue 06, 2012.
    [15] U. S. NRC. Westinghouse AP1000 design control document rev. 19[R]. ML11171A500, 2011.
    [16] Zamani M, Tafakkorbari S, Rostami H, et al. Release assessment of tritium in liquid effluents of Bushehr nuclear power plant (BNPP) in 2013[C]//Proceedings of LXIV International conference NUCLEUS 2014. 2014: 261-262.
    [17] van der Stricht S, Janssens A. Radioactive effluents from nuclear power stations and nuclear fuel reprocessing sites in the European Union, 1999-2003[R]. Radiation Protection 143, 2005.
    [18] van der Stricht S, Janssens A. Radioactive effluents from nuclear power stations and nuclear fuel reprocessing sites in the European Union, 2004-08[R]. Radiation Protection 164, 2010.
    [19] 广东大亚湾核电站岭澳核电站生产运行年鉴(1994-2015)[M]. 北京: 原子能出版社, 1994-2015

    GNPS & LNPS operation yearbook (1994-2015)[M]. Beijing: Atomic Energy Press, 1994-2015
    [20] 付鹏涛. 压水堆氚源项研究[R]. 中广核研究院有限公司, 2018

    Fu Pengtao. Study of PWR tritium production[R]. CNPRI, 2018
    [21] 付鹏涛. 压水堆氚排放量计算模型及参数的优化研究[R]. 中广核研究院有限公司, 2017

    Fu Pengtao. Study of PWR tritium production calculation model and parameter[R]. CNPRI, 2017
    [22] Chretien V, Le Guen B. Rejets de tritium et impact autour des centrales EDF[C]//Proceedings of Tritium Conference in Paris France. 2009: 23-24.
    [23] 欧阳俊杰, 陈跃. 大亚湾核电站1994~2002年放射性流出物监测总结[J]. 辐射防护, 2004, 24(3/4):162-172. (Ouyang Junjie, Chen Yue. Summarization of radioactive effluent monitoring in Daya Bay nuclear power station 1994~2002[J]. Radiation Protection, 2004, 24(3/4): 162-172
    [24] Elleman T S, Austin J H, Verghese K. Tritium diffusion in Zircaloy-2 and stainless steels[J]. Transactions of the American Nuclear Society, 1972, 15(1): 229-230.
    [25] Abraham P M, Chandra D, Mintz J M, et al. Diffusion of gases in solids: rare gas diffusion in solids; tritium diffusion in fission and fusion reactor metals[R]. ORO-3508-10, 1976.
    [26] Gilbert E R, Allen R P, Baldwin D L, et al. Tritium permeation and related studies on barrier treated 316 stainless steel[R]. PNL-SA-19113, 1991.
    [27] Dollè L, Houdaille B, Leger D, et al. Tritium in fission reactors, production and management[J]. The International Journal of Applied Radiation and Isotopes, 1980, 31: 463.
    [28] Yario W R. Tritium inventory and release from core materials[J]. The International Journal of Applied Radiation and Isotopes, 1980, 31: 462.
    [29] Andrieu C, Rave S, Ducros G, et al. Release of fission tritium through Zircaloy-4 fuel cladding tubes[J]. Journal of Nuclear Materials, 2005, 347(1/2): 12-19.
    [30] Westinghouse Electric Company. Secondary sources-double encapsulated secondary source assemblies (SSAs)[R]. NFCM-0013, 2013.
    [31] Meyer G, Stokke E. Description of Sizewell B nuclear power plant[R]. NKS/RAK-2(97)TR-C4, 1997: 1-3.
    [32] Crouail P, Jeannin B, Lefaure C, et al. Organisation of radiation protection at Sizewell nuclear power plant in the UK[R]. Contract N°647/EDF, 2004: 35-47.
    [33] 陈忠宇, 张勇. 秦山核电厂大修期间辐射源项分析[J]. 辐射防护, 2009, 29(2):65-71. (Chen Zhongyu, Zhang Yong. Analysis of source terms during refuiling outage at Qinshan nuclear power plant[J]. Radiation Protection, 2009, 29(2): 65-71
    [34] Homyk W A, Peters J, Quan B, et al. Antimony/beryllium neutron source leakage at Indian Point 2[J]. Radiation Protection Management, 1992, 9(3): 65-80.
    [35] The Committee on the Safety of Nuclear Installations of the OECD Nuclear Energy Agency. Leaking secondary neutron source in reactor coolant system[R]. 2002: 29-35.
    [36] 章安龙. 反应堆无二次中子源装料和启动[J]. 核科学与工程, 2019, 39(3):345-349. (Zhang Anlong. Reactor reloading and startup without secondary neutron source[J]. Nuclear Science and Engineering, 2019, 39(3): 345-349 doi: 10.3969/j.issn.0258-0918.2019.03.002
    [37] 费罗杰, 勒瑞. 取消昌江核电厂二次中子源的理论探究[J]. 设备管理与维修, 2015(s2):13-16. (Fei Luojie, Le Rui. Theoretical research of abandon of secondary neutron source in Changjiang nuclear power plant[J]. Plant Maintenance Engineering, 2015(s2): 13-16
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  982
  • HTML全文浏览量:  326
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2022-01-12
  • 录用日期:  2022-01-13
  • 网络出版日期:  2022-01-17
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回