留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

20 cm口径离子推力器力学特性模拟分析

史楷 孙明明 顾左 岳士超

史楷, 孙明明, 顾左, 等. 20 cm口径离子推力器力学特性模拟分析[J]. 强激光与粒子束, 2022, 34: 044005. doi: 10.11884/HPLPB202234.210419
引用本文: 史楷, 孙明明, 顾左, 等. 20 cm口径离子推力器力学特性模拟分析[J]. 强激光与粒子束, 2022, 34: 044005. doi: 10.11884/HPLPB202234.210419
Shi Kai, Sun Mingming, Gu Zuo, et al. Mechanical properties analysis of a 20 cm diameter ion thruster[J]. High Power Laser and Particle Beams, 2022, 34: 044005. doi: 10.11884/HPLPB202234.210419
Citation: Shi Kai, Sun Mingming, Gu Zuo, et al. Mechanical properties analysis of a 20 cm diameter ion thruster[J]. High Power Laser and Particle Beams, 2022, 34: 044005. doi: 10.11884/HPLPB202234.210419

20 cm口径离子推力器力学特性模拟分析

doi: 10.11884/HPLPB202234.210419
基金项目: 国家自然科学基金青年科学基金项目(61901202);甘肃省科技计划资助项目(18JR3RA412);“十三五”星箭可靠性增长项目(ZKCP0701)
详细信息
    作者简介:

    史 楷,905152817@qq.com

    通讯作者:

    孙明明,smmhappy@163.com

  • 中图分类号: V439.4

Mechanical properties analysis of a 20 cm diameter ion thruster

  • 摘要: 为了提升20 cm离子推力器的抗冲击性能,对现有结构开展了力学分析和试验验证。对栅极组件进行结构等效处理后,采用有限元方法分析了整机的模态和冲击响应谱。分析结果显示,栅极组件结构等效前后的分析结果对比差距8.3%~11.9%;推力器的3个轴向基频分别为246,248,336 Hz,栅极组件和中间极靴是离子推力器的力学薄弱环节并对整体结构稳定性具有重要影响;在冲击载荷1600 g下,栅极组件表面应力主要集中在小孔区边缘处,且形变也主要发生在小孔区;在采取刚度为1000 kN/m的减振措施后,栅极组件的整体形变位移降低了60%~82%。试验结果显示,在10~1200 Hz的低频扫描过程中,推力器3个轴向的基频分别为256,258,348 Hz,与仿真结果基本一致,采用减振措施后的20 cm口径离子推力器通过了1600 g的冲击试验。
  • 图  1  口径20 cm离子推力器结构示意图

    Figure  1.  Structure of 20 cm diameter ion thruster

    图  2  加速栅不同结构下的x方向形变量和Von-Mises应力分布

    Figure  2.  x-direction deformation and Von-Mises stress of different accelerator grid structure

    图  3  20 cm离子推力器部件简化处理

    Figure  3.  Components simplification of 20 cm diameter thruster

    图  4  20 cm离子推力器的有限元模型

    Figure  4.  Finite element analysis model of LIPS-200 ion thruster

    图  5  20 cm离子推力器预应力和形变分析结果

    Figure  5.  Pre-stress and pre-deformation of 20 cm ion thruster

    图  6  冲击载荷下栅极组件z方向Von-Mises应力分布及形变量

    Figure  6.  z-direction Von-Mises stress and deformation of the grids under impact load

    图  7  增加减振措施后的栅极z方向Von-Mises应力及形变的冲击响应分析结果

    Figure  7.  z-direction Von-Mises stress and deformation of the grids by elastic support under impact load

    图  8  x方向基频扫描结果和1600 g冲击载荷试验结果

    Figure  8.  x-direction fundamental frequency and response spectrum

    表  1  20 cm离子光学系统结构等效后的材料力学特性

    Table  1.   Effective property of the grids of 20 cm ion thruster

    componentmaterialtransparencyeffective density/(kg·m−3)effective Young’s modulus
    /GPa
    Poisson ratio
    the screen gridMo0.69297399.20.31
    the accelerator gridMo0.277001233.60.31
    下载: 导出CSV

    表  2  不同加速栅有限元模型下的模态分析结果对比

    Table  2.   Comparison of modal analysis for different FEM models of the accelerator grid

    structuremodal analysis results of the accelerator grid/Hz
    1st step2nd step3rd step4th step5th step6th step
    with-aperture (reality)51.815207.55251.89303.24427.88474.92
    without-aperture (effective)47.193194.05237.34293.65405.02453.04
    下载: 导出CSV

    表  3  20 cm离子推力器不同部件的材料力学属性

    Table  3.   Different components material property of 20 cm ion thruster

    componentsmaterialdensity/(kg·m−3)Young’s modulus/GPaPoisson ratioextension strength/MPa
    mount ring2A122700720.31265
    up/down harness2A122700720.31265
    magnet (effective)4105720.31265
    up/down magnet poleDT47830810.29170
    hollow cathode1Cr18Ni9Ti79301930.31200
    boltsTC-44620960.34825
    下载: 导出CSV

    表  4  推力器前6阶模态分析结果及不同方向的有效质量百分比

    Table  4.   Primary 6 step modal frequencies and effective mass percentage of thruster

    modalfrequency/Hzx-direction/%y-direction/%z-direction/%
    1 246.066 35 1 1
    2 248.167 1 37 0
    3 338.722 4 0 50
    4 404.484 0 17 0
    5 411.324 15 0 3
    6 605.016 0 0 1
    下载: 导出CSV
  • [1] 刘文一, 杨涓, 毛根旺, 等. 电子回旋共振推力器C/C复合材料栅极的力学性能[J]. 推进技术, 2007, 28(6):692-696. (Liu Wenyi, Yang Juan, Mao Genwang, et al. Mechanical property evaluation of C/C composite material grids for electron cyclotron resonance thruster[J]. Journal of Propulsion Technology, 2007, 28(6): 692-696 doi: 10.3321/j.issn:1001-4055.2007.06.022
    [2] MacRae G S, Zavesky R J, Gooder S T. Structural and thermal response of 30 cm diameter ion thruster optics[C]//Proceedings of the 25th Joint Propulsion Conference. AIAA, 1989.
    [3] Brophy J R, Mueller J, Brown D K. Carbon-carbon ion engine grids with non-circular apertures[C]//Proceedings of the 31st Joint Propulsion Conference and Exhibit. AIAA, 1995.
    [4] Haag T. Mechanical design of carbon ion optics[C]//Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA, 2005.
    [5] Mueller J, Brophy J R, Brown D K. Endurance testing and fabrication of advanced 15-cm and 30-cm carbon-carbon composite grids[C]//Proceedings of the 31st Joint Propulsion Conference and Exhibit. AIAA, 1995.
    [6] Haag T, Soulas G. Performance of 8 cm pyrolytic-graphite ion thruster optics[C]//Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA, 2002.
    [7] Hayakawa Y, Kitamura S, Miyazaki K. Endurance test of C/C grids for 14-cm xenon ion thrusters[C]//Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA, 2002.
    [8] 郑茂繁. 离子发动机栅极组件的热应力分析[J]. 真空与低温, 2006, 12(1):33-36. (Zheng Maofan. Analysis of thermal stress of ion thruster’s grid[J]. Vacuum & Cryogenics, 2006, 12(1): 33-36 doi: 10.3969/j.issn.1006-7086.2006.01.007
    [9] Haag T, Soulas G C. Performance and vibration of 30 cm pyrolytic ion thruster optics[C]//Proceedings of the 39th Joint Propulsion Conference and Exhibit. AIAA, 2003.
    [10] Meckel N, Polaha J. Structural analysis of pyrolytic graphite optics for the HiPEP ion thruster[C]//Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA, 2004.
    [11] Hassani B, Hinton E. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure[J]. Computers & Structures, 1998, 69(6): 707-717.
    [12] Hassani B, Hinton E. A review of homogenization and topology optimization II—analytical and numerical solution of homogenization equations[J]. Computers & Structures, 1998, 69(6): 719-738.
    [13] Hassani B, Hinton E. A review of homogenization and topology optimization III—Topology optimization using optimality criteria[J]. Computers & Structures, 1998, 69(6): 739-756.
    [14] 浦广益. ANSYS Workbench基础教程与实例详解[M]. 3版. 北京: 中国水利水电出版社, 2013: 240-241

    Pu Guangyi. ANSYS Workbench basic tutorial and example explanation[M]. 3rd ed. Beijing: China Water Power Press, 2013: 240-241
    [15] 李会勋, 胡迎春, 张建中. 利用ANSYS模拟螺栓预紧力的研究[J]. 山东科技大学学报(自然科学版), 2006, 25(1):57-59. (Li Huixun, Hu Yingchun, Zhang Jianzhong. Study on simulating bolt pretension by using ANSYS[J]. Journal of Shandong University of Science and Technology (Natural Science), 2006, 25(1): 57-59
    [16] 祖炳锋, 付光琦, 徐玉梁, 等. 车用柴油机缸孔在缸盖螺栓预紧力下变形的数值模拟与试验研究[J]. 内燃机工程, 2010, 31(2):98-104. (Zu Bingfeng, Fu Guangqi, Xu Yuliang, et al. Numerical simulation and experimental investigation on cylinder bore deformation of automotive diesel engines under cylinder-head bolt pretightened[J]. Chinese Internal Combustion Engine Engineering, 2010, 31(2): 98-104 doi: 10.3969/j.issn.1000-0925.2010.02.020
    [17] 黄侨, 胡健琛, 黄志伟, 等. 考虑减振装置弹簧刚度的斜拉索等效索长及索力测量[J]. 东南大学学报(自然科学版), 2012, 42(4):724-728. (Huang Qiao, Hu Jianchen, Huang Zhiwei, et al. Equivalent length of stayed-cable considering spring stiffness of damping device and measurement of cable-force[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(4): 724-728 doi: 10.3969/j.issn.1001-0505.2012.04.028
    [18] 苏荣华, 彭晨宇. 振动筛橡胶弹簧非线性刚度实验及仿真研究[J]. 应用基础与工程科学学报, 2011, 19(6):986-994. (Su Ronghua, Peng Chenyu. Experiment and simulation research on nonlinear stiffness of vibrating screen rubber spring[J]. Journal of Basic Science and Engineering, 2011, 19(6): 986-994 doi: 10.3969/j.issn.1005-0930.2011.06.016
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  664
  • HTML全文浏览量:  242
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 修回日期:  2022-01-10
  • 录用日期:  2022-01-28
  • 网络出版日期:  2022-02-17
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回