留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双束等离子体尾波加速中的束流相对能散预测

王晓宁 高杰 安维明 王佳 李大章 曾明 鲁巍

王晓宁, 高杰, 安维明, 等. 双束等离子体尾波加速中的束流相对能散预测[J]. 强激光与粒子束, 2022, 34: 049002. doi: 10.11884/HPLPB202234.210425
引用本文: 王晓宁, 高杰, 安维明, 等. 双束等离子体尾波加速中的束流相对能散预测[J]. 强激光与粒子束, 2022, 34: 049002. doi: 10.11884/HPLPB202234.210425
Wang Xiaoning, Gao Jie, An Weiming, et al. Predicting relative energy spread in two-bunch plasma wakefield acceleration[J]. High Power Laser and Particle Beams, 2022, 34: 049002. doi: 10.11884/HPLPB202234.210425
Citation: Wang Xiaoning, Gao Jie, An Weiming, et al. Predicting relative energy spread in two-bunch plasma wakefield acceleration[J]. High Power Laser and Particle Beams, 2022, 34: 049002. doi: 10.11884/HPLPB202234.210425

双束等离子体尾波加速中的束流相对能散预测

doi: 10.11884/HPLPB202234.210425
基金项目: 国家自然科学基金项目(12075030, 11975252); 中国科学院前沿科学重点研究计划项目(QYZDJ-SSW-SLH004);中国科学院人才引进计划(E05153U1); 中国科学院高能物理研究所创新基金项目(Y954516)
详细信息
    作者简介:

    王晓宁,wangxiaoning@ihep.ac.cn

    通讯作者:

    安维明,anweiming@bnu.edu.cn

    李大章,lidz@ihep.ac.cn

  • 中图分类号: TF806

Predicting relative energy spread in two-bunch plasma wakefield acceleration

  • 摘要: 针对空泡机制中的双束等离子体尾波电子加速设计,给出了能够快速得到被加速束流在最大加速距离下的相对能散的预测公式。通过加速初始时刻束流纵向分布以及束流所处位置的纵向尾波场可得到束流最终相对能散。该预测公式不仅可应用于驱动束流与被加速束流初始能量相同的情况,还可应用于两个束流初始能量不相同的情况。由该预测公式得到的束流相对能散与被加速束流和驱动束流的初始能量的比值有关,而与两个束流初始能量的数值无关。利用准静态近似的粒子网格模拟程序QuickPIC对理论进行了模拟验证,模拟结果与理论预期结果一致。
  • 图  1  D = 1时加速开始时刻以及达到最大加速距离时刻等离子体中的尾波结构

    Figure  1.  Wake structure in the plasma at the beginning and at the maximal acceleration distance of an acceleration at D = 1

    图  2  D = 2时在最大加速距离时刻 (a) 驱动束流初始能量为10 GeV和 (b) 驱动束流初始能量为5 GeV的等离子体中的尾波结构

    Figure  2.  Wake structure in the plasma for (a) drive beam’s initial energy is 10 GeV and (b) drive beam’s initial energy is 5 GeV at the maximal acceleration distance of an acceleration at D = 2

    表  1  PIC模拟和式(3)得到的相对能散

    Table  1.   Relative energy spread from PIC simulations and equation (3)

    $ D $drive beam$ d/{\text{k}}_{\text{p}}^{-1} $trailing beam$ \vartriangle s/{\text{m}} $$ {\delta _{Er}}/{\text{{\text{%}} }} $$ {\delta _{Ep}}/{\text{{\text{%}} }} $
    $ {W_{ds}}/{\text{GeV}} $$ {\sigma _{ {\textit{z}} d}}/{\text{k}}_{\text{p}}^{-1} $$ {n_{bd}}/{{\text{n}}_{\text{p}}} $$ {\varepsilon _{Nd}}/{\text{k}}_{\text{p}}^{-1} $$ {\sigma _{r{\text{d}}}}/{\text{k}}_{\text{p}}^{-1} $$ {W_{ts}}/{\text{GeV}} $$ {\sigma _{ {\textit{z}} t}}/{\text{k}}_{\text{p}}^{-1} $$ {n_{bt}}/{{\text{n}}_{\text{p}}} $$ {\varepsilon _{Nt}}/{\text{k}}_{\text{p}}^{-1} $$ {\sigma _{rt}}/{\text{k}}_{\text{p}}^{-1} $
    1101800.250.054100.2576.360.250.055.82.332.36
    2101800.250.054200.2576.360.350.055.81.721.74
    251800.170.054100.2576.360.250.052.91.721.74
    下载: 导出CSV
  • [1] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [2] Chen P, Dawson J M, Huff R W, et al. Acceleration of electrons by the interaction of a bunched electron beam with a plasma[J]. Physical Review Letters, 1985, 54(7): 693-696. doi: 10.1103/PhysRevLett.54.693
    [3] Rosenzweig J B, Breizman B, Katsouleas T, et al. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields[J]. Physical Review A, 1991, 44(10): R6189-R6192. doi: 10.1103/PhysRevA.44.R6189
    [4] Lu Wei, Huang Chengkun, Zhou Miaomiao, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Physical Review Letters, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
    [5] Lu Wei, Huang Chengkun, Zhou Miaomiao, et al. A nonlinear theory for multidimensional relativistic plasma wave wakefields[J]. Physics of Plasmas, 2006, 13: 056709. doi: 10.1063/1.2203364
    [6] Hogan M J, Assmann R, Decker F J, et al. E-157: a 1.4-m-long plasma wake field acceleration experiment using a 30 GeV electron beam from the Stanford Linear Accelerator Center Linac[J]. Physics of Plasmas, 2000, 7(5): 2241-2248. doi: 10.1063/1.874059
    [7] Muggli P, Lee S, Katsouleas T, et al. Collective refraction of a beam of electrons at a plasma-gas interface[J]. Physical Review Special Topics-Accelerators and Beams, 2001, 4: 091301. doi: 10.1103/PhysRevSTAB.4.091301
    [8] Clayton C E, Blue B E, Dodd E S, et al. Transverse envelope dynamics of a 28.5-GeV electron beam in a long plasma[J]. Physical Review Letters, 2002, 88: 154801. doi: 10.1103/PhysRevLett.88.154801
    [9] Hogan M J, Clayton C E, Huang Chengkun, et al. Ultrarelativistic-positron-beam transport through meter-scale plasmas[J]. Physical Review Letters, 2003, 90: 205002. doi: 10.1103/PhysRevLett.90.205002
    [10] Blue B E, Clayton C E, O'Connell C L, et al. Plasma-wakefield acceleration of an intense positron beam[J]. Physical Review Letters, 2003, 90: 214801. doi: 10.1103/PhysRevLett.90.214801
    [11] Muggli P, Blue B E, Clayton C E, et al. Meter-scale plasma-wakefield accelerator driven by a matched electron beam[J]. Physical Review Letters, 2004, 93: 014802. doi: 10.1103/PhysRevLett.93.014802
    [12] Litos M, Adli E, An Weiming, et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator[J]. Nature, 2014, 515(7525): 92-95. doi: 10.1038/nature13882
    [13] Corde S, Adli E, Allen J M, et al. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield[J]. Nature, 2015, 524(7566): 442-445. doi: 10.1038/nature14890
    [14] Seryi A, Hogan M, Pei Shilun, et al. A concept of plasma wake field acceleration linear collider (PWFA-LC)[R]. SLAC-PUB-13766, 2009.
    [15] Fonseca R A, Silva L O, Tsung F S, et al. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators[C]//Proceedings of International Conference on Computational Science. Amsterdam: Springer, 2002: 342-351.
    [16] Huang Chengkun, Decyk V K, Ren C, et al. QUICKPIC: a highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas[J]. Journal of Computational Physics, 2006, 217(2): 658-679. doi: 10.1016/j.jcp.2006.01.039
    [17] An Weiming, Decyk V K, Mori W B, et al. An improved iteration loop for the three dimensional quasi-static particle-in-cell algorithm: QuickPIC[J]. Journal of Computational Physics, 2013, 250: 165-177. doi: 10.1016/j.jcp.2013.05.020
    [18] https://gitee.com/bnu-plasma-astrophysics-sg/quick-pic-open-source.git.
    [19] Joshi C, Blue B, Clayton C E, et al. High energy density plasma science with an ultrarelativistic electron beam[J]. Physics of Plasmas, 2002, 9(5): 1845-1855. doi: 10.1063/1.1455003
    [20] Bane K L F, Chen P, Wilson P B. On collinear wake field acceleration[J]. IEEE Transactions on Nuclear Science, 1985, 32(5): 3524-3526. doi: 10.1109/TNS.1985.4334416
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  222
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-10
  • 修回日期:  2021-12-23
  • 录用日期:  2022-01-06
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回