留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高触发信号和功率合成的高峰值功率皮秒脉冲源

张雅茹 陈袭 李杨 杨宏春 魏召唤

张雅茹, 陈袭, 李杨, 等. 高触发信号和功率合成的高峰值功率皮秒脉冲源[J]. 强激光与粒子束, 2022, 34: 065001. doi: 10.11884/HPLPB202234.210449
引用本文: 张雅茹, 陈袭, 李杨, 等. 高触发信号和功率合成的高峰值功率皮秒脉冲源[J]. 强激光与粒子束, 2022, 34: 065001. doi: 10.11884/HPLPB202234.210449
Zhang Yaru, Chen Xi, Li Yang, et al. High-power picosecond pulse source based on high trigger signal and power synthesis[J]. High Power Laser and Particle Beams, 2022, 34: 065001. doi: 10.11884/HPLPB202234.210449
Citation: Zhang Yaru, Chen Xi, Li Yang, et al. High-power picosecond pulse source based on high trigger signal and power synthesis[J]. High Power Laser and Particle Beams, 2022, 34: 065001. doi: 10.11884/HPLPB202234.210449

高触发信号和功率合成的高峰值功率皮秒脉冲源

doi: 10.11884/HPLPB202234.210449
基金项目: 国家自然科学基金项目(61871071)
详细信息
    作者简介:

    张雅茹,202022120408@std.uestc.edu.cn

    通讯作者:

    李 杨,yli@uestc.edu.cn

    杨宏春,yhc690227@uestc.edu.cn

  • 中图分类号: TN782

High-power picosecond pulse source based on high trigger signal and power synthesis

  • 摘要: 对于目标的攻击、干扰和探测,超宽带时域脉冲源的幅值直接影响其攻击、干扰和探测的强度和效果。基于雪崩晶体管的Marx电路被广泛应用在产生此类信号源上,传统的Marx电路可以一定程度上提高输出电压的幅值,但由于雪崩晶体管功率容量较低等原因,雪崩晶体管的Marx电路输出电压幅度会随级数增加而达到饱和。针对此类问题,为了产生更高幅值的脉冲信号,综合采用提高触发信号和使用宽带功率合成器的手段。最终利用26级Marx电路作为触发信号,4路40级Marx电路进行功率合成的方法,实现了输出电压幅值为8.7 kV、上升沿约为180 ps的技术指标,并通过机理分析了高触发信号对雪崩晶体管Marx电路的影响,通过实验得到了印证。
  • 图  1  高电压触发和低电压触发雪崩时间对比图

    Figure  1.  High trigger voltage and low trigger voltage avalanche time comparison

    图  2  触发电路

    Figure  2.  Trigger circuit

    图  3  触发信号

    Figure  3.  Trigger signal

    图  4  脉冲电路

    Figure  4.  Pulse circuit

    图  5  单板级数和触发电压分别对输出电压的影响

    Figure  5.  Effect of single-board stage and trigger voltage on output voltage, respectively

    图  6  触发抖动测试

    Figure  6.  Trigger jitter test

    图  7  调整延迟前后波形关系

    Figure  7.  Waveforms before and after the delay adjustment

    图  8  延迟前后对比图

    Figure  8.  Comparison of output amplitude before and after delay adjustment

    图  9  功率合成

    Figure  9.  Power synthesis

    表  1  雪崩三极管技术指标

    Table  1.   Avalanche transistor specifications

    collector-base
    voltage UCBO/V
    collector-emitter
    voltage UCES/V
    collector-emitter
    voltage UCEO/V
    emitter-base
    voltage UEBO/V
    continuous collector
    current IC/V
    peak collector
    current ICM/V
    260260100650060
    下载: 导出CSV

    表  2  功率分配器技术指标

    Table  2.   Technical indexes of power distributor

    itemfrequency/
    MHz
    insertion loss/
    dB
    input
    VSWR
    output
    VSWR
    isolation/
    dB
    impedance/
    Ω
    power rating/W
    splittercombiner
    2-way 500~8000 ≤1.5 1.15∶1 1.11∶1 27 50 30 2
    4-way 380~2700 ≤0.6 1.7∶1 19 50 30 2
    下载: 导出CSV
  • [1] Krishnaswamy P, Kuthi A, Vernier P T, et al. Compact subnanosecond pulse generator using avalanche transistors for cell electroperturbation studies[J]. IEEE Transactionson Dielectricsand ElectricalInsulation, 2007, 14(4): 873-877. doi: 10.1109/TDEI.2007.4286518
    [2] Petrella R A, Schoenbach K H, Xiao Shu. A dielectric rod antenna for picosecond pulse stimulation of neurological tissue[J]. IEEE Transactions on Plasma Science, 2016, 44(4): 708-714. doi: 10.1109/TPS.2016.2537213
    [3] Xiao Shu, Guo Siqi, Nesin V, et al. Subnanosecond electric pulses cause membrane permeabilization and cell death[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(5): 1239-1245.
    [4] Wang Qing, Tian Xiaojian, Liu Yang, et al. Design of an ultra-wideband pulse generator based on avalanche transistor[C]//2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. 2008: 1-4.
    [5] Jethwa J, Marinero E E, Müller A. Nanosecond risetime avalanche transistor circuit for triggering a nitrogen laser[J]. Review of Scientific Instruments, 1981, 52(7): 989-991. doi: 10.1063/1.1136738
    [6] Lundy A, Parker JR, Lunsford J S, et al. Avalanche transistor pulser for fast-gated operation of microchannel plate image-intensifiers[J]. IEEE Transactions on Nuclear Science, 1978, 25(1): 591-597.
    [7] 袁雪林, 梁步阁, 吕波, 等. 探地雷达高功率高稳定度脉冲源设计[J]. 强激光与粒子束, 2007, 19(10):1689-1692. (Yuan Xuelin, Liang Buge, Lv Bo, et al. High-power and high-stability pulser for ground penetrating radar[J]. High Power Laser and Particle Beams, 2007, 19(10): 1689-1692
    [8] Ramezani M, Akmal A A S, Niayesh K. Solid-state high-voltage pulse generator for low temperature plasma ion mobility spectrometry[J]. IEEE Transactions on Plasma Science, 2019, 47(3): 1629-1636. doi: 10.1109/TPS.2019.2894844
    [9] Takasaki M, Kurita H, Kubota T, et al. Electrostatic precipitation of diesel PM at reduced gas temperature[C]//2015 IEEE Industry Applications Society Annual Meeting. Addison, 2015: 1-4.
    [10] Li Zi, SakaiS, YamadaC, et al. The effects of pulsed streamerlike discharge on cyanobacteria cells[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1719-1724. doi: 10.1109/TPS.2006.883378
    [11] Akiyama H, Sakugawa T, Namihira T, et al. Industrial applications of pulsed power technology[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1051-1064. doi: 10.1109/TDEI.2007.4339465
    [12] 徐乐, 江伟华. 基于雪崩三极管的快前沿脉冲功率源研究[J]. 强激光与粒子束, 2016, 28:015001. (Xu Le, Jiang Weihua. Study of fast rising pulsed power generator based on avalanche transistors[J]. High Power Laser and Particle Beams, 2016, 28: 015001 doi: 10.11884/HPLPB201628.015001
    [13] Shen Saikang, Yan Jiaqi, Wang Yanan, et al. Further investigations on a modified avalanche transistor-based Marx bank circuit[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8506-8513. doi: 10.1109/TIM.2020.2993343
    [14] Yan Jiaqi, Shen Saikang, Ding Weidong. High-power nanosecond pulse generators with improved reliability by adopting auxiliary triggering topology[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1353-1364. doi: 10.1109/TPEL.2019.2922360
    [15] Shen Saikang, Yan Jiaqi, SunGuoxiang, et al. Improved auxiliary triggering topology for high-power nanosecond pulse generators based on avalanche transistors[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 13634-13644. doi: 10.1109/TPEL.2021.3087732
    [16] Deng Zichen, Yuan Qi, Shen Saikang, et al. High voltage nanosecond pulse generator based on avalanche transistor Marx bank circuit and linear transformer driver[J]. Review of Scientific Instruments, 2021, 92: 034715. doi: 10.1063/5.0042523
    [17] 张萌. 基于Marx电路的亚纳秒级脉冲源研制[D]. 成都: 电子科技大学, 2020: 1-10

    Zhang Meng. Development of sub-nanosecond pulse source based on Marx circuit[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 1-10
    [18] Li Jiangtao, Zhao Zheng, Sun Yi, et al. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer[J]. Review of Scientific Instruments, 2017, 88: 033507. doi: 10.1063/1.4978650
    [19] Yang Qingxi, Kang Qiaokun, Chen Xiaoyu, et al. A higher amplitude all solid state pulse source based on the power synthesis circuit[C]//Proceedings of SPIE 11763 Seventh Symposium on Novel Photoelectronic Detection Technology and Applications. 2021: 117635L.
    [20] 杨宏春. 基于光导开关的高功率微波系统研究[D]. 成都: 电子科技大学, 2008: 1-10

    Yang Hongchun. Research on high power microwave system based on photoconductive switch[D]. Chengdu: University of Electronic Science and Technology of China, 2008: 1-10
    [21] 浙江大学半导体器件教研室. 晶体管原理[M]. 北京: 国防工业出版社, 1980

    Department of Semiconductor Devices, Zhejiang University. Transistor Principle[M]. Beijing: National Defense Industry Press, 1980
    [22] Mallik K. Nonuniform doping of the collector in avalanche transistors to improve the performance of Marx bank circuits[J]. Review of Scientific Instruments, 2000, 71(4): 1853-1861. doi: 10.1063/1.1150547
    [23] Mallik K. The theory of operation of transistorized Marx bank circuits[J]. Review of Scientific Instruments, 1999, 70(4): 2155-2160. doi: 10.1063/1.1149729
    [24] QiuYangxin, XieYanzhao, Gao Mingxiang, et al. High power and high pulse repetition frequency transistorized pulser by time base stability improvement and power synthesis technique[J]. Review of Scientific Instruments, 2020, 91: 084703. doi: 10.1063/5.0014645
    [25] 党龙飞. 钻孔测井雷达关键技术与原理样机研究[D]. 成都: 电子科技大学, 2019: 1-10

    Dang Longfei. Research on key technologies and principles prototype of borehole logging[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 1-10
    [26] He Renjie, Li Yang, Liu Zhennan, et al. Development of a high peak voltage picoseconds avalanche transistor based Marx bank circuit[J]. IEEE Access, 2021, 9: 64844-64851. doi: 10.1109/ACCESS.2021.3075960
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  875
  • HTML全文浏览量:  379
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 修回日期:  2022-02-18
  • 网络出版日期:  2022-03-07
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回