留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti-Zr-V吸气剂薄膜在管道的制备与真空性能研究

朱邦乐 范乐 洪远志 王思慧 尉伟 王一刚 方键威 王勇

朱邦乐, 范乐, 洪远志, 等. Ti-Zr-V吸气剂薄膜在管道的制备与真空性能研究[J]. 强激光与粒子束, 2022, 34: 064005. doi: 10.11884/HPLPB202234.210478
引用本文: 朱邦乐, 范乐, 洪远志, 等. Ti-Zr-V吸气剂薄膜在管道的制备与真空性能研究[J]. 强激光与粒子束, 2022, 34: 064005. doi: 10.11884/HPLPB202234.210478
Zhu Bangle, Fan Le, Hong Yuanzhi, et al. Vacuum performance of Ti-Zr-V getter films deposited on narrow tubes[J]. High Power Laser and Particle Beams, 2022, 34: 064005. doi: 10.11884/HPLPB202234.210478
Citation: Zhu Bangle, Fan Le, Hong Yuanzhi, et al. Vacuum performance of Ti-Zr-V getter films deposited on narrow tubes[J]. High Power Laser and Particle Beams, 2022, 34: 064005. doi: 10.11884/HPLPB202234.210478

Ti-Zr-V吸气剂薄膜在管道的制备与真空性能研究

doi: 10.11884/HPLPB202234.210478
基金项目: 国家自然科学基金项目(11975226,11905219)
详细信息
    作者简介:

    朱邦乐,zhubl@mail.ustc.edu.cn

    通讯作者:

    范 乐,lefan@ustc.edu.cn

    王 勇,ywang@ustc.edu.cn

  • 中图分类号: TB79

Vacuum performance of Ti-Zr-V getter films deposited on narrow tubes

  • 摘要: 利用直流磁控溅射方法在单晶硅片和内径为22 mm、长度分别为500 mm和1500 mm的银铜管道内壁镀制了Ti-Zr-V非蒸散型吸气剂薄膜,并对镀膜管道的极限真空进行了测量。结果显示:在180 ℃下激活24 h后,镀制了Ti-Zr-V薄膜真空管道的极限真空度可以达到9.2×10−10 Pa。在关闭测试系统和离子泵的阀门后,系统仅依靠Ti-Zr-V薄膜的吸气依然能够维持在9×10−9 Pa很长时间。利用测试粒子蒙特卡罗法对薄膜的抽速和容量进行了分析和测量,结果显示,Ti-Zr-V薄膜对CO的初始粘附系数最大可以达到0.3,容量可以达到1.2个分子层。
  • 图  1  直流磁控溅射镀膜系统原理图

    Figure  1.  Schematic diagram of DC magnetron sputtering coating system

    图  2  极限真空测试系统原理

    Figure  2.  Schematic diagram of ultimate vacuum test system

    图  3  NEG薄膜管道抽速测试系统图

    Figure  3.  System diagram of the vacuum system for analyzing vacuum properties of the tubular NEG tube

    图  4  Ti-Zr-V薄膜样品的(a)表面和(b)断面SEM图像和(c)EDS mapping图像

    Figure  4.  SEM surface (a), cross-sectional (b) and (c) EDS mapping images of Ti-Zr-V films

    图  5  Ti-Zr-V薄膜的XPS全谱图

    Figure  5.  XPS full spectrum of prepared Ti-Zr-V NEG films

    图  6  CO初始粘附系数和容量随激活温度的变化函数

    Figure  6.  Initial CO sticking probability and CO pumping capacity as a function of activation temperature

    表  1  镀膜参数

    Table  1.   Coating parameters

    working
    pressure /Pa
    sputtering
    gas
    working
    current/A
    pulsed
    frequency/kHz
    based
    pressure/Pa
    depositing
    time/h
    magnetic field
    strength/T
    1Kr0.1501×10−580.02
    下载: 导出CSV

    表  2  极限真空测试结果

    Table  2.   Results of ultimate vacuum measurement

    time/daypressure/Pa
    long tubeshort tube
    12.08×10−99.26×10−9
    102.04×10−91.77×10−8
    close valve
    301.96×10−93.17×10−8
    601.52×10−92.82×10−8
    901.32×10−91.71×10−8
    1201.02×10−99.30×10−9
    1509.6×10−109.40×10−9
    1809.2×10−109.18×10−9
    360 8.20×10−9
    下载: 导出CSV
  • [1] Sun Zhenbo, Shang Lei, Shang Fenglei, et al. Simulation study of longitudinal injection scheme for HALS with a higher harmonic cavity system[J]. Nuclear Science and Techniques, 2019, 30: 113. doi: 10.1007/s41365-019-0627-x
    [2] 张波, 王勇, 尉伟, 等. 直流磁控溅射法在管道内壁镀TiZrV薄膜[J]. 强激光与粒子束, 2010, 22(9):2124-2128. (Zhang Bo, Wang Yong, Wei Wei, et al. Deposition of TiZrV coatings onto inner wall of stainless steel pipe by DC magnetron sputtering[J]. High Power Laser and Particle Beams, 2010, 22(9): 2124-2128 doi: 10.3788/HPLPB20102209.2124
    [3] Benvenuti C, Chiggiato P, Cicoira F, et al. Decreasing surface outgassing by thin film getter coatings[J]. Vacuum, 1998, 50(1/2): 57-63.
    [4] Benvenuti C, Chiggiato P, Cicoira F, et al. Nonevaporable getter films for ultrahigh vacuum applications[J]. Journal of Vacuum Science & Technology A, 1998, 16(1): 148-154.
    [5] Jimenez J M. LHC: the world's largest vacuum systems being operated at CERN[J]. Vacuum, 2009, 84(1): 2-7. doi: 10.1016/j.vacuum.2009.05.015
    [6] Al-Dmour E, Grabski M J. The vacuum system of MAX IV storage rings: installation and conditioning[C]//Proceedings of the 8th International Particle Accelerator Conference. Copenhagen, Denmark, 2017: 3468-3470.
    [7] Hahn M. Operational experience and relation to deposition process for NEG-coated chambers installed on the ESRF electron storage ring[J]. Vacuum, 2007, 81(6): 759-761. doi: 10.1016/j.vacuum.2005.11.051
    [8] Malyshev O B, Cox M P. Design modelling and measured performance of the vacuum system of the diamond light source storage ring[J]. Vacuum, 2012, 86(11): 1692-1696. doi: 10.1016/j.vacuum.2012.03.015
    [9] Li C C, Huang J L, Lin R J, et al. Activation characterization of non-evaporable Ti–Zr–V getter films by synchrotron radiation photoemission spectroscopy[J]. Thin Solid Films, 2009, 517(20): 5876-5880. doi: 10.1016/j.tsf.2007.06.102
    [10] Ge Xiaoqin, Wang Yigang, Shao Jieqiong, et al. Testing the activation temperature of non-evaporable Ti-Zr-Hf-V getter films by XPS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 967: 163864. doi: 10.1016/j.nima.2020.163864
    [11] Prodromides A E, Scheuerlein C, Taborelli M. Lowering the activation temperature of TiZrV non-evaporable getter films[J]. Vacuum, 2001, 60(1/2): 35-41.
    [12] Benvenuti C, Chiggiato P, Mongelluzzo A, et al. Influence of the elemental composition and crystal structure on the vacuum properties of Ti-Zr-V nonevaporable getter films[J]. Journal of Vacuum Science & Technology A, 2001, 19(6): 2925-2930.
    [13] Malyshev O B, Valizadeh R, Colligon J S, et al. Influence of deposition pressure and pulsed dc sputtering on pumping properties of Ti–Zr–V nonevaporable getter films[J]. Journal of Vacuum Science & Technology A, 2009, 27(3): 521-530.
    [14] Malyshev O B, Middleman K J, Colligon J S, et al. Activation and measurement of nonevaporable getter films[J]. Journal of Vacuum Science & Technology A, 2009, 27(2): 321-327.
    [15] Malyshev O B, Middleman K J. Test particle monte-Carlo modelling of installations for NEG film pumping properties evaluation[J]. Vacuum, 2009, 83(6): 976-979. doi: 10.1016/j.vacuum.2008.11.008
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  680
  • HTML全文浏览量:  304
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2022-03-07
  • 录用日期:  2022-03-10
  • 网络出版日期:  2022-03-15
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回