留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

6061-Al合金的自离子辐照损伤效应

闫占峰 郑健 周韦 王浩

闫占峰, 郑健, 周韦, 等. 6061-Al合金的自离子辐照损伤效应[J]. 强激光与粒子束, 2022, 34: 056008. doi: 10.11884/HPLPB202234.210509
引用本文: 闫占峰, 郑健, 周韦, 等. 6061-Al合金的自离子辐照损伤效应[J]. 强激光与粒子束, 2022, 34: 056008. doi: 10.11884/HPLPB202234.210509
Yan Zhanfeng, Zheng Jian, Zhou Wei, et al. The self-ion irradiation effects in 6061-Al alloy[J]. High Power Laser and Particle Beams, 2022, 34: 056008. doi: 10.11884/HPLPB202234.210509
Citation: Yan Zhanfeng, Zheng Jian, Zhou Wei, et al. The self-ion irradiation effects in 6061-Al alloy[J]. High Power Laser and Particle Beams, 2022, 34: 056008. doi: 10.11884/HPLPB202234.210509

6061-Al合金的自离子辐照损伤效应

doi: 10.11884/HPLPB202234.210509
基金项目: 国防科工局核能开发项目
详细信息
    作者简介:

    闫占峰,zhanfengyan@pku.edu.cn

  • 中图分类号: TL341

The self-ion irradiation effects in 6061-Al alloy

  • 摘要: 铝合金是国内外研究堆的主要结构材料,在前期300#研究堆主要结构材料铝合金辐照性能研究的基础上,通过离子辐照研究6061-Al合金的微观结构损伤和引起的硬度变化,以开展较高辐照剂量下6061-Al合金损伤效应的前期探索。结果表明,经过自离子辐照后,6061-Al合金中产生了夹角为72°的位错环等缺陷,随着辐照剂量从0.218×1016 cm−2增加到4.367×1016 cm−2,缺陷密度明显增加,但选区电子衍射表明合金保持了很好的晶体结构,并没有发生非晶化。纳米压痕测试表明,不同辐照剂量下,样品中产生了不同程度的硬化,且微观硬度随着辐照剂量的增加而增加,当剂量增加到2.183×1016和4.367×1016 cm−2时,辐照硬化达到饱和,约为11%。研究结果可为初步预测较高中子辐照剂量下6061-Al合金结构和性能的变化提供数据支撑。
  • 图  1  3 MeV Al离子辐照6061-Al合金的SRIM计算结果(以4.367×1016 cm−2剂量为例)

    Figure  1.  SRIM calculation result for 3 MeV Al ions in 6061-Al alloy normalized to an ion fluence of 4.367×1016 cm−2

    图  2  6061-Al合金中的析出物(均在[110]带轴下拍摄)

    Figure  2.  Precipitates in 6061-Al alloy (all the images are taken at [110] zone axis)

    图  3  6061-Al合金中析出物的EDS能谱扫描结果

    Figure  3.  EDS spectrum of the precipitates in 6061-Al alloy

    图  4  不同剂量离子辐照产生的损伤带

    Figure  4.  Damage zones induced by ion irradiation at different fluences

    图  5  不同辐照剂量下产生的缺陷团簇

    Figure  5.  Defect clusters at different irradiation fluences

    图  6  10,20 dpa下1/3<111>层错环的高分辨图像

    Figure  6.  HRTEM images of 1/3<111> faulted loops at 10 dpa and 20 dpa

    图  7  离子辐照前后6061-Al合金硬度与压入深度变化曲线

    Figure  7.  Curves of hardness and indentation depth of 6061 Al alloy before and after ion irradiation

    表  1  国产核级6061-Al合金的化学成分

    Table  1.   Chemical composition of nuclear-grade 6061-Al alloy

    elementsmass fraction/%
    Mg0.80~1.20
    Si0.40~0.80
    Cu0.15~0.40
    Cr0.04~0.35
    Fe≤0.70
    Mn≤0.04
    Ti≤0.15
    Zn≤0.25
    other impurity elements≤0.05
    Albalanced
    下载: 导出CSV
  • [1] Garric V, Colas K, Donnadieu P, et al. Impact of the microstructure on the swelling of aluminum alloys: characterization and modelling bases[J]. Journal of Nuclear Materials, 2021, 557: 153273. doi: 10.1016/j.jnucmat.2021.153273
    [2] Soria S R, Tolley A, Sánchez E A. The influence of microstructure on blistering and bubble formation by He ion irradiation in Al alloys[J]. Journal of Nuclear Materials, 2015, 467: 357-367. doi: 10.1016/j.jnucmat.2015.09.051
    [3] 郁金南. 材料辐照效应[M]. 北京: 化学工业出版社, 2007

    Yu Jinnan. Radiation effects in materials[M]. Beijing: Chemical Industry Press, 2007
    [4] Sturcken E F. Irradiation effects in magnesium and aluminum alloys[J]. Journal of Nuclear Materials, 1979, 82(1): 39-53. doi: 10.1016/0022-3115(79)90037-0
    [5] King R T, Jostsons A. Irradiation damage in a 2.2 pct magnesium-aluminum alloy[J]. Metallurgical Transactions A, 1975, 6(4): 863-868. doi: 10.1007/BF02672309
    [6] Kamigaki N, Furuno S, Hojou K, et al. Evolution of structural damage in aluminum alloys irradiated with helium ions[J]. Journal of Nuclear Materials, 1992, 191/194: 1214-1218. doi: 10.1016/0022-3115(92)90667-A
    [7] Was G S. Challenges to the use of ion irradiation for emulating reactor irradiation[J]. Journal of Materials Research, 2015, 30(9): 1158-1182. doi: 10.1557/jmr.2015.73
    [8] Jiao Z, Michalicka J, Was G S. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels[J]. Journal of Nuclear Materials, 2018, 501: 312-318. doi: 10.1016/j.jnucmat.2018.01.054
    [9] Pareige C, Kuksenko V, Pareige P. Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe–Cr alloys – Comparison to neutron irradiation[J]. Journal of Nuclear Materials, 2015, 456: 471-476. doi: 10.1016/j.jnucmat.2014.10.024
    [10] Was G S, Jiao Z, Getto E, et al. Emulation of reactor irradiation damage using ion beams[J]. Scripta Materialia, 2014, 88: 33-36. doi: 10.1016/j.scriptamat.2014.06.003
    [11] Zinkle S J, Snead L L. Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations[J]. Scripta Materialia, 2018, 143: 154-160. doi: 10.1016/j.scriptamat.2017.06.041
    [12] Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 310: 75-80.
    [13] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. doi: 10.1557/JMR.1992.1564
    [14] Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20. doi: 10.1557/jmr.2004.19.1.3
    [15] Li Xiaodong, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications[J]. Materials Characterization, 2002, 48(1): 11-36. doi: 10.1016/S1044-5803(02)00192-4
    [16] Liu Xiangbing, Wang Rongshan, Ren Ai, et al. Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation[J]. Journal of Nuclear Materials, 2014, 444(1/3): 1-6.
    [17] 王广厚. 粒子同固体相互作用物理学[M]. 北京: 科学出版社, 1991

    Wang Guanghou. Particle-solid interaction physics[M]. Beijing: Science Press, 1991
    [18] Osetsky Y N, Bacon D J, Serra A, et al. Stability and mobility of defect clusters and dislocation loops in metals[J]. Journal of Nuclear Materials, 2000, 276(1/3): 65-77.
    [19] Singh B N, Foreman A J E, Trinkaus H. Radiation hardening revisited: role of intracascade clustering[J]. Journal of Nuclear Materials, 1997, 249(2/3): 103-115.
    [20] 郭立平, 罗凤风, 于雁霞. 核材料辐照位错环[M]. 北京: 国防工业出版社, 2017

    Guo Liping, Luo Fengfeng, Yu Yanxia. Dislocation loops in irradiated nuclear materials[M]. Beijing: National Defense Industry Press, 2017
    [21] Changizian P, Zhang H K, Yao Z. Effect of simultaneous helium implantation on the microstructure evolution of Inconel X-750 superalloy during dual-beam irradiation[J]. Philosophical Magazine, 2015, 95(35): 3933-3949. doi: 10.1080/14786435.2015.1109152
    [22] Tartour J P, Washburn J. Climb kinetics of dislocation loops in aluminium[J]. The Philosophical Magazine:A Journal of Theoretical Experimental and Applied Physics, 1968, 18(156): 1257-1267. doi: 10.1080/14786436808227755
    [23] Yang Tengfei, Guo Wei, Poplawsky J D, et al. Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation[J]. Acta Materialia, 2020, 188: 1-15. doi: 10.1016/j.actamat.2020.01.060
    [24] Lu Chenyang, Yang Taini, Jin Ke, et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys[J]. Acta Materialia, 2017, 127: 98-107. doi: 10.1016/j.actamat.2017.01.019
    [25] Xiu Pengyuan, Bei Hongbin, Zhang Yanwen, et al. STEM characterization of dislocation loops in irradiated FCC alloys[J]. Journal of Nuclear Materials, 2021, 544: 152658. doi: 10.1016/j.jnucmat.2020.152658
    [26] Murakami S, Miyazaki A, Mizuno M. Modeling of irradiation embrittlement of reactor pressure vessel steels[J]. Journal of Engineering Materials and Technology, 2000, 122(1): 60-66. doi: 10.1115/1.482766
    [27] Yamamoto T, Odette G R, Kishimoto H, et al. On the effects of irradiation and helium on the yield stress changes and hardening and non-hardening embrittlement of ~8Cr tempered martensitic steels: compilation and analysis of existing data[J]. Journal of Nuclear Materials, 2006, 356(1/3): 27-49.
    [28] Pharr G M, Herbert E G, Gao Y F. The indentation size effect: a critical examination of experimental observations and mechanistic interpretations[J]. Annual Review of Materials Research, 2010, 40: 271-292. doi: 10.1146/annurev-matsci-070909-104456
    [29] Wei Y P, Liu P P, Zhu Y M, et al. Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel[J]. Journal of Alloys and Compounds, 2016, 676: 481-488. doi: 10.1016/j.jallcom.2016.03.167
    [30] Konings R J M, Allen T R, Stoller R E, et al. Comprehensive nuclear materials[M]. Amsterdam: Elsevier Science, 2012.
    [31] Huang H F, Li D H, Li J J, et al. Nanostructure variations and their effects on mechanical strength of Ni-17Mo-7Cr alloy under xenon ion irradiation[J]. Materials Transactions, 2014, 55(8): 1243-1247. doi: 10.2320/matertrans.M2014075
    [32] Heintze C, Bergner F, Hernández-Mayoral M. Ion-irradiation-induced damage in Fe-Cr alloys characterized by nanoindentation[J]. Journal of Nuclear Materials, 2011, 417(1/3): 980-983.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  270
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2022-03-30
  • 网络出版日期:  2022-04-09
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回