留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

95 MeV射频电子直线加速器辐射防护分析

李迪开 曹磊峰 池云龙 周征 陈秋宏 张春晖 代艳萌 俞健 颜苗苗 邓嘉玲 汪雪 周沧涛

李迪开, 曹磊峰, 池云龙, 等. 95 MeV射频电子直线加速器辐射防护分析[J]. 强激光与粒子束, 2022, 34: 064008. doi: 10.11884/HPLPB202234.210518
引用本文: 李迪开, 曹磊峰, 池云龙, 等. 95 MeV射频电子直线加速器辐射防护分析[J]. 强激光与粒子束, 2022, 34: 064008. doi: 10.11884/HPLPB202234.210518
Li Dikai, Cao Leifeng, Chi Yunlong, et al. Radiation protection analysis of 95 MeV RF electron linac[J]. High Power Laser and Particle Beams, 2022, 34: 064008. doi: 10.11884/HPLPB202234.210518
Citation: Li Dikai, Cao Leifeng, Chi Yunlong, et al. Radiation protection analysis of 95 MeV RF electron linac[J]. High Power Laser and Particle Beams, 2022, 34: 064008. doi: 10.11884/HPLPB202234.210518

95 MeV射频电子直线加速器辐射防护分析

doi: 10.11884/HPLPB202234.210518
基金项目: 广东省教育厅普通高校特色创新项目(2021KTSCX113); 博士后出站留(来)深科研资助项目; 深圳技术大学新引进高端人才财政补助项目(20200206)。
详细信息
    作者简介:

    李迪开,lidikai@sztu.edu.cn

    通讯作者:

    曹磊峰,caoleifeng@sztu.edu.cn

  • 中图分类号: TL508

Radiation protection analysis of 95 MeV RF electron linac

  • 摘要: 应相关建设安评、环评、稳评以及职业健康评估的要求,电子加速器设计过程中即应对其辐射情况进行分析。针对电子能量为40~95 MeV可调的光阴极微波电子枪直线加速器,对其辐射源项进行分析,并讨论了可能的辐射防护措施的效果。采用蒙特卡罗软件FLUKA对电子束流和加速器进行建模,通过模拟计算发现,加速器产生的等效剂量分布主要位于废束桶中,废束桶以外辐射剂量迅速下降,在电子加速器实验大厅四周设置混凝土墙体的情况下辐射等效剂量率将随墙体厚度迅速下降。若混凝土墙体厚度设置为1 m,则墙体外工作人员所在区域辐射等效剂量率不高于1 μSv/h量级,能够有效屏蔽加速器产生的电离辐射,给工作人员提供有效防护。研究方法及结果对同能区同类型加速器建设中的辐射分析及辐射防护评估具有一定的参考价值。
  • 图  1  加速器及四周防护混凝土墙体整体几何建模

    Figure  1.  Overall geometric modeling of accelerator and surrounding protective shielding wall

    图  2  废束桶工程设计图

    Figure  2.  Engineering drawing of beam dump

    图  3  束流从废束桶前开始运动产生的等效剂量分布(水平面图)

    Figure  3.  Dose equivalent distribution produced by the beam moving from the front of the beam dump(horizontal plane)

    图  4  束流从废束桶前开始运动产生的等效剂量分布(垂直面图)

    Figure  4.  Dose equivalent distribution produced by the beam moving from the front of the beam dump (vertical plane)

    图  5  束流从废束桶前开始运动产生的等效剂量在顶棚混凝土厚度0.5 m处分布(水平面图)

    Figure  5.  Dose equivalent distribution, at the height where the concrete thickness of the ceiling is 0.5 m, produced by the beam moving from the front of the beam dump (horizontal plane)

    表  1  各重要点位束流参数表

    Table  1.   Parameters of beam at important positions

    No.important
    position
    remnant
    beam/%
    normalization
    parameter
    path
    length/cm
    path length after interaction
    point/cm
    beam
    energy/MeV
    γ
    origin point100.0000.000380.0059.785
    YAG199.9620.0006467.0059.785
    start of acceleration199.8980.00170180.0059.785
    end of acceleration199.7270.00057480.005097.847
    YAG299.6700.00019581.005097.847
    start of acceleration 299.6510.00170614.005097.847
    end of acceleration 299.4810.00030914.0095185.91
    YAG399.4500.00040967.0095185.91
    YAG499.4110.001471037.0095185.91
    interaction point99.2630.001391296.000.0095185.91
    YAG599.1240.000151541.00245.0095185.91
    start of bending magnetic field99.1090.000431568.10272.1095185.91
    YAG699.0660.000551644.10348.1095185.91
    front end of beam dump99.0110.990111740.75444.7595185.91
    下载: 导出CSV
    No.important
    position
    normalized divergence/
    (mm·mrad−1)
    geometric divergence/
    (mm·mrad−1)
    beam size/
    mm(rms)
    beam size/cm
    (FWHM)
    divergence angle/
    mrad
    divergence angle/mrad
    (FWHM)
    origin point0.200000.020440.250000.058880.081760.19254
    YAG10.215510.022030.237850.056010.092600.21807
    start of acceleration10.241670.024700.217360.051190.113630.26759
    end of acceleration10.311110.003180.162960.038380.019510.04595
    YAG20.334490.003420.144650.034060.023630.05566
    start of acceleration 20.342130.003500.138670.032660.025220.05938
    end of acceleration 20.411570.002210.084270.019840.026270.06187
    YAG30.423840.002280.074660.017580.030540.07192
    YAG40.440050.002370.061960.014590.038200.08996
    interaction point0.500000.002690.015000.003530.179300.42225
    YAG50.500000.002690.439290.103450.179300.42225
    start of bending magnetic field0.500000.002690.487880.114890.179300.42225
    YAG60.500000.002690.624150.146990.179300.42225
    front end of beam dump0.500000.002690.797440.187800.179300.42225
    下载: 导出CSV
  • [1] 赵振堂, 高杰. 高能粒子对撞机加速器物理与设计[M]. 上海: 上海交通大学出版社, 2020

    Zhao Zhentang, Gao Jie. Physics and design for accelerators of high energy particle colliders[M]. Shanghai: Shanghai Jiao Tong University Press, 2020
    [2] 李成龙, 汤振兴, 裴元吉. 低发射度L波段光阴极微波电子枪物理设计[J]. 核技术, 2016, 39:090203. (Li Chenglong, Tang Zhenxing, Pei Yuanji. Physical design of low-emittance L-band photocathode microwave electron gun[J]. Nuclear Techniques, 2016, 39: 090203 doi: 10.11889/j.0253-3219.2016.hjs.39.090203
    [3] 陈佳洱. 加速器物理基础[M]. 北京: 北京大学出版社, 2012. (Chen Jia’er. Physics basics of accelerator[M]. Beijing: Peking University Press, 2012))
    [4] 方锦清, 陈关荣. 强流加速器中的束晕-混沌现象的定性分析[J]. 中国原子能科学研究院年报, 2000:69-70. (Fang Jinqing, Chen Guanrong. Qualitative analysis of beam halo chaos in high current accelerator[J]. Annual Report for China Institute of Atomic Energy, 2000: 69-70
    [5] 何丽娟. 高能电子直线加速器(NSRL Linac)感生放射性研究[D]. 合肥: 中国科学技术大学, 2016: 7-30

    He Lijuan. Induced radioactivity research of high-energy electron linear accelerator (NSRL Linac)[D]. Hefei: University of Science and Technology of China, 2016: 7-30
    [6] GB 5172-1985, 粒子加速器辐射防护规定[S]

    GB 5172-1985, The rule for radiation protection of particle accelerators[S]
    [7] HJ 979-2018, 电子加速器辐照装置辐射安全和防护[S]

    HJ 979-2018, Radiation safety and protection on electron accelerator irradiation facilities[S]
    [8] 邱睿, 李君利, 武祯, 等. 四种蒙特卡罗程序的比较计算[J]. 原子能科学技术, 2008, 42(12):1149-1152. (Qiu Rui, Li Junli, Wu Zhen, et al. Comparison calculation of four Monte-Carlo codes[J]. Atomic Energy Science and Technology, 2008, 42(12): 1149-1152
    [9] Diamond W T, Ross C K. Actinium-225 production with an electron accelerator[J]. Journal of Applied Physics, 2021, 129: 104901. doi: 10.1063/5.0043509
    [10] Huang Mingyang. Study of accelerator neutrino detection at a spallation source[J]. Chinese Physics C, 2016, 40: 063002. doi: 10.1088/1674-1137/40/6/063002
    [11] Perillo-Marcone A, Calviani M, Solieri N, et al. Design and operation of the air-cooled beam dump for the extraction line of CERN's Proton Synchrotron Booster[J]. Physical Review Accelerators and Beams, 2020, 23: 063001. doi: 10.1103/PhysRevAccelBeams.23.063001
    [12] Ganter R. SwissFEL conceptual design report[R]. PSI Bericht 10-04, 2011: 10-04.
    [13] Ahdida C, Bozzato D, Calzolari D, et al. New capabilities of the FLUKA multi-purpose code[J]. Frontiers in Physics, 2022, 9: 788253. doi: 10.3389/fphy.2021.788253
    [14] Battistoni G, Boehlen T, Cerutti F, et al. Overview of the FLUKA code[J]. Annals of Nuclear Energy, 2015, 82: 10-18. doi: 10.1016/j.anucene.2014.11.007
    [15] Vlachoudis V. FLAIR: a powerful but user friendly graphical interface for FLUKA[C]//Proceedings of International Conference on Mathematics, Computational Methods & Reactor Physics. New York: American Nuclear Society, 2009, 2: 790-800.
    [16] Kutcher G J. Radiation protection design guidelines for 0.1 to 100 MeV particle accelerator facilities[J]. Medical Physics, 1978, 5(1): 73. doi: 10.1118/1.594404
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  750
  • HTML全文浏览量:  175
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 修回日期:  2022-03-16
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回