留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微通道液氮换热的脉冲磁体快速冷却方法研究

何勇 孟昭男 张鹏 孙衢骎 周星健

何勇, 孟昭男, 张鹏, 等. 基于微通道液氮换热的脉冲磁体快速冷却方法研究[J]. 强激光与粒子束, 2022, 34: 115002. doi: 10.11884/HPLPB202234.220069
引用本文: 何勇, 孟昭男, 张鹏, 等. 基于微通道液氮换热的脉冲磁体快速冷却方法研究[J]. 强激光与粒子束, 2022, 34: 115002. doi: 10.11884/HPLPB202234.220069
He Yong, Meng Zhaonan, Zhang Peng, et al. Investigation on fast cooling method for pulsed magnet based on heat transfer of flowing liquid nitrogen in micro-channels[J]. High Power Laser and Particle Beams, 2022, 34: 115002. doi: 10.11884/HPLPB202234.220069
Citation: He Yong, Meng Zhaonan, Zhang Peng, et al. Investigation on fast cooling method for pulsed magnet based on heat transfer of flowing liquid nitrogen in micro-channels[J]. High Power Laser and Particle Beams, 2022, 34: 115002. doi: 10.11884/HPLPB202234.220069

基于微通道液氮换热的脉冲磁体快速冷却方法研究

doi: 10.11884/HPLPB202234.220069
详细信息
    作者简介:

    何 勇,4045604@qq.com

  • 中图分类号: TL331

Investigation on fast cooling method for pulsed magnet based on heat transfer of flowing liquid nitrogen in micro-channels

  • 摘要: 影响脉冲磁体重频运行能力的关键因素是磁体的冷却速度。提出了一种脉冲磁体快速冷却方法:在磁体导体内开微小通道,在通道内注入液氮,通过增大导体与液氮之间的直接接触面积(换热面积)、液氮单相流动换热、液氮流动沸腾换热这三个途径来大幅提高导体的冷却速度,与此同时尽可能减小对脉冲磁体性能(磁场强度、脉宽和内直径)的影响。阐述了基于微通道内液氮流动、沸腾换热的脉冲磁体快速冷却方法的原理,开展了数值模拟和验证性试验,结果表明,对于25 T的20 mm口径脉冲磁体,采用快速冷却方法,30 s即可冷却至初始温度,为磁体仅浸泡在液氮中的冷却时间(600 s)的5%,冷却速度提高了19倍。
  • 图  1  快速冷却脉冲磁体示意图

    Figure  1.  Structure of the designed magnet

    图  2  初始温度为77 K时,放电结束时磁体的温度分布

    Figure  2.  Temperature distribution of the magnet at the end of discharge, initial temperature is 77 K

    图  3  放电结束时各层导体沉积的热量

    Figure  3.  Deposited energy for each layer conductor of the magnet at the end of discharge

    图  4  磁体导体平均温度随时间的变化

    Figure  4.  Temporal evolution of average temperature of the magnet conductor during intermittent running process

    图  5  1~20层导体冷却情况计算模型

    Figure  5.  Model for the cooling processing simulation for the designed magnet (1st~20th layer)

    图  6  1 s加热(功率80 kW)后,1~20层导体温度分布

    Figure  6.  Temperature of the 1st~20th layer after 1 s heating with 80 kW

    图  7  磁体导体(1~20层模型)冷却过程

    Figure  7.  Cooling processing of magnet conductors (1st~20th layer model)

    图  8  1 s加热(功率12 kW)后,8~9层导体温度分布

    Figure  8.  Temperature of the 8th~9th layer after 1 s heating with 12 kW

    图  9  磁体导体(8~9层模型)冷却过程

    Figure  9.  Cooling processing of magnet conductors (8th~9th layer model)

    图  10  缩比型脉冲磁体

    Figure  10.  Scaled pulsed magnet

    图  11  缩比型脉冲磁体放电电流波形

    Figure  11.  Discharged current of the scaled pulsed magnet

    图  12  三种不同冷却方式下,磁体冷却过程

    Figure  12.  Cooling processing of the magnet with 3 kinds of cooling method

    表  1  铜和环氧树脂材料在不同温度下的热物性

    Table  1.   Thermal properties of copper and epoxy under different temperatures

    thermal
    property/K
    density
    of cooper/
    (kg·m−3)
    specific heat
    capacity of
    cooper/(J·kg−1·K−1)
    thermal
    conductivity of
    cooper/(W·m−2·K−1)
    density of
    composite
    material/(kg·m−3)
    specific heat
    capacity of composite
    material/(J·kg−1·K−1)
    thermal conductivity
    of composite
    material/(W·m−2·K−1)
    958978199.13579.141560246.400.22
    778978245.20490.341560304.000.29
    1358978307.03440.221560432.00
    下载: 导出CSV
  • [1] Noe II G T, Nojiri H, Lee J, et al. A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T[J]. Review of Scientific Instruments, 2013, 84: 123906. doi: 10.1063/1.4850675
    [2] Frings P, Witte H, Jones H, et al. Rapid cooling methods for pulsed magnets[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 612-615. doi: 10.1109/TASC.2008.921243
    [3] Peng Tao, Sun Quqin, Zhao Jianlong, et al. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center[J]. Review of Scientific Instruments, 2013, 84: 125112. doi: 10.1063/1.4849195
    [4] 孙凤玉, 张鹏, 王如竹. 毛细管内液氮的自然对流换热数值计算分析[J]. 低温与超导, 2006, 34(2):79-84 doi: 10.3969/j.issn.1001-7100.2006.02.003

    Sun Fengyu, Zhang Peng, Wang Ruzhu. Numerical study of the natural convection heat transfer of liquid nitrogen in the capillary tubes[J]. Cryogenics, 2006, 34(2): 79-84 doi: 10.3969/j.issn.1001-7100.2006.02.003
    [5] Steiner D, Schlünder E U. Heat transfer and pressure drop for boiling nitrogen flowing in a horizontal tube: 1. Saturated flow boiling[J]. Cryogenics, 1976, 16(7): 387-399. doi: 10.1016/0011-2275(76)90050-3
    [6] Steiner D, Schlünder E U. Heat transfer and pressure drop for boiling nitrogen flowing in a horizontal tube: 2. Pressure drop[J]. Cryogenics, 1976, 16(8): 457-464. doi: 10.1016/0011-2275(76)90002-3
    [7] Klimenko V V. Heat transfer intensity at forced flow boiling of cryogenic liquids in tubes[J]. Cryogenics, 1982, 22(11): 569-576. doi: 10.1016/0011-2275(82)90003-0
    [8] Qi Shouliang, Zhang Pingang, Wang R Z, et al. Single-phase pressure drop and heat transfer characteristics of turbulent liquid nitrogen flow in micro-tubes[J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10): 1993-2001.
    [9] Qi Shouliang, Zhang Pingang, Wang R Z, et al. Flow boiling of liquid nitrogen in micro-tubes: part I—the onset of nucleate boiling, two-phase flow instability and two-phase flow pressure drop[J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 4999-5016.
    [10] Qi Shouliang, Zhang Pingang, Wang R Z, et al. Flow boiling of liquid nitrogen in micro-tubes: part II—heat transfer characteristics and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 5017-5030.
    [11] Fu X, Qi Shouliang, Zhang Pingang, et al. Visualization of flow boiling of liquid nitrogen in a vertical mini-tube[J]. International Journal of Multiphase Flow, 2008, 34(4): 333-351. doi: 10.1016/j.ijmultiphaseflow.2007.10.014
    [12] Zhang Pingang, Jia Hongwei. Evolution of flow patterns and the associated heat and mass transfer characteristics during flow boiling in mini-/micro-channels[J]. Chemical Engineering Journal, 2016, 306: 978-991. doi: 10.1016/j.cej.2016.08.034
    [13] Billette J, Duc F, Frings P, et al. A 30 T pulsed magnet with conical bore for synchrotron powder diffraction[J]. Review of Scientific Instruments, 2012, 83: 043904. doi: 10.1063/1.3701830
    [14] Islam Z, Capatina D, Ruff J P C, et al. A single-solenoid pulsed-magnet system for single-crystal scattering studies[J]. Review of Scientific Instruments, 2012, 83: 035101. doi: 10.1063/1.3688251
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  196
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-09-05
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回