留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气氛环境对真空窗口紫外激光诱导损伤阈值的影响机制

柴向旭 王冠中 田晓琳 王礼权 田野 敬域堃 曾发 周松 陈远斌

柴向旭, 王冠中, 田晓琳, 等. 气氛环境对真空窗口紫外激光诱导损伤阈值的影响机制[J]. 强激光与粒子束, 2022, 34: 121004. doi: 10.11884/HPLPB202234.220119
引用本文: 柴向旭, 王冠中, 田晓琳, 等. 气氛环境对真空窗口紫外激光诱导损伤阈值的影响机制[J]. 强激光与粒子束, 2022, 34: 121004. doi: 10.11884/HPLPB202234.220119
Chai Xiangxu, Wang Guanzhong, Tian Xiaolin, et al. Influence mechanism of atmosphere on the damage threshold induced by ultraviolet laser in vacuum window[J]. High Power Laser and Particle Beams, 2022, 34: 121004. doi: 10.11884/HPLPB202234.220119
Citation: Chai Xiangxu, Wang Guanzhong, Tian Xiaolin, et al. Influence mechanism of atmosphere on the damage threshold induced by ultraviolet laser in vacuum window[J]. High Power Laser and Particle Beams, 2022, 34: 121004. doi: 10.11884/HPLPB202234.220119

气氛环境对真空窗口紫外激光诱导损伤阈值的影响机制

doi: 10.11884/HPLPB202234.220119
基金项目: 国家自然科学基金项目(51902299);激光聚变研究中心青年人才基金项目(RCFPD4-2020-4)
详细信息
    作者简介:

    柴向旭,chai_xiangxu@126.com

    通讯作者:

    王礼权,wanglq1013@caep.cn

  • 中图分类号: O437

Influence mechanism of atmosphere on the damage threshold induced by ultraviolet laser in vacuum window

  • 摘要: 基于氟橡胶圈密封测试了熔石英真空窗口在351 nm激光辐照下的激光诱导损伤阈值(LIDT),实验发现真空窗口和氟橡胶圈紧密接触后LIDT下降约50%,氟橡胶圈经多次挤压后,其对真空窗口LIDT的影响显著减弱,在此基础上对比了大气、103 Pa和10−2~10−1 Pa下真空窗口的LIDT,结果显示随着气压降低真空窗口LIDT显著下降且气压再次升高后其LIDT未有提升。基于铟丝密封对比测试了真空窗口在不同气压下的LIDT,结果未发现气体含量差异对真空窗口LIDT的影响。对比两种密封材料测试结果,认为真空窗口LIDT下降是由氟橡胶圈污染引起,且低气压下有机物释放加剧。
  • 图  1  真空窗口LIDT测试装置示意图

    Figure  1.  Schematic diagram of experimental setup for the VW LIDT test

    图  2  样片的典型损伤形貌与初始LIDT

    Figure  2.  Typical damage morphology and initial LIDT of samples

    图  3  橡胶圈密封条件下样片的LIDT

    Figure  3.  LIDT of samples under rubber ring sealing condition

    图  4  橡胶圈密封过程对6#样片LIDT的影响

    Figure  4.  Influence of rubber ring sealing process on LIDT of 6# sample

    图  5  橡胶圈密封时样片在不同气压下的LIDT

    Figure  5.  LIDT of samples under different air pressure when rubber ring is sealed

    图  6  铟丝圈密封时样片的LIDT

    Figure  6.  LIDT of samples when indium ring is sealed

  • [1] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [2] Carr C W, Bude J, Miller P E, et al. Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation[C]//Proceedings of SPIE 10447, Laser-Induced Damage in Optical Materials 2017. 2017: 1044702.
    [3] Liao Z M, Carr C W, Cross D, et al. Damage performance of fused silica debris shield at the National Ignition Facility[C]//Proceedings of SPIE 11173, Laser-induced Damage in Optical Materials 2019. 2019: 111730Y.
    [4] Chai Xiangxu, Li Ping, Zhao Junpu, et al. Laser-induced damage growth of large-aperture fused silica optics under high-fluence 351 nm laser irradiation[J]. Optik, 2021, 226: 165549.
    [5] Gingreau C, Lanternier T, Lamaignère L, et al. Impact of mechanical stress induced in silica vacuum windows on laser-induced damage[J]. Optics Letters, 2018, 43(8): 1706-1709. doi: 10.1364/OL.43.001706
    [6] 徐世珍, 郑万国, 孙久勋, 等. 环境气氛压强对熔石英紫外激光损伤阈值的影响[J]. 强激光与粒子束, 2008, 20(10):1649-1652

    Xu Shizhen, Zheng Wanguo, Sun Jiuxun, et al. Effect of gas atmosphere and pressure on 351 nm laser-induced damage threshold of fused silica[J]. High Power Laser and Particle Beams, 2008, 20(10): 1649-1652
    [7] Demos S G, Burnham A, Wegner P, et al. Surface defect generation in optical materials under high fluence laser irradiation in vacuum[J]. Electronics Letters, 2000, 36(6): 566-567. doi: 10.1049/el:20000419
    [8] 黄进, 周信达, 周晓燕, 等. 真空紫外激光辐照对熔石英表面氧空位的影响[J]. 真空科学与技术学报, 2014, 34(12):1393-1398 doi: 10.13922/j.cnki.cjovst.2014.12.20

    Huang Jin, Zhou Xinda, Zhou Xiaoyan, et al. Oxygen-deficiency of fused silica surfaces induced by ultra violet pulsed laser irradiation in high vacuum[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(12): 1393-1398 doi: 10.13922/j.cnki.cjovst.2014.12.20
    [9] 夏莉, 李蔚. 低温容器材料在真空状态下放气率的研究进展[J]. 制冷与空调, 2016, 30(5):595-598

    Xia Li, Li Wei. Review of outgassing rate of the cryogenics-vessel material in vacuum[J]. Refrigeration and Air Conditioning, 2016, 30(5): 595-598
    [10] 苗心向, 袁晓东, 吕海兵, 等. 激光装置污染物诱导光学元件表面损伤实验研究[J]. 中国激光, 2015, 42:0602001 doi: 10.3788/CJL201542.0602001

    Miao Xinxiang, Yuan Xiaodong, Lü Haibing, et al. Experimental study of laser-induced damage of optical components surface owing to particle contamination in high power laser facility[J]. Chinese Journal of Lasers, 2015, 42: 0602001 doi: 10.3788/CJL201542.0602001
    [11] Liu Taixiang, Yang Ke, Zhang Zhuo, et al. Hydrofluoric acid-based etching effect on surface pit, crack, and scratch and laser damage site of fused silica optics[J]. Optics Express, 2019, 27(8): 10705-10728. doi: 10.1364/OE.27.010705
    [12] 苗心向, 袁晓东, 吕海兵. 基于微纳光纤的气溶胶探测应用技术[J]. 强激光与粒子束, 2014, 26:114103 doi: 10.11884/HPLPB201426.114103

    Miao Xinxiang, Yuan Xiaodong, Lü Haibing. Contamination particles sensor based on microfiber[J]. High Power Laser and Particle Beams, 2014, 26: 114103 doi: 10.11884/HPLPB201426.114103
    [13] Bude J, Miller P, Baxamusa S, et al. High fluence laser damage precursors and their mitigation in fused silica[J]. Optics Express, 2014, 22(5): 5839-5851. doi: 10.1364/OE.22.005839
    [14] 于宏伟, 张蕊, 戎媛, 等. 氟橡胶结构及热稳定性研究[J]. 特种橡胶制品, 2020, 41(5):59-64 doi: 10.16574/j.cnki.issn1005-4030.2020.05.014

    Yu Hongwei, Zhang Rui, Rong Yuan, et al. Structure and thermal stability of fluororubber[J]. Special Purpose Rubber Products, 2020, 41(5): 59-64 doi: 10.16574/j.cnki.issn1005-4030.2020.05.014
    [15] 刘玉魁, 杨建斌, 肖详正. 真空工程设计[M]. 北京: 化学工业出版社, 2016

    Liu Yukui, Yang Jianbin, Xiao Xiangzheng. Design of vacuum engineering[M]. Beijing: Chemical Industry Press, 2016
    [16] Boling N L, Crisp M D, Dubé G. Laser induced surface damage[J]. Applied Optics, 1973, 12(4): 650-660. doi: 10.1364/AO.12.000650
    [17] 冯焱, 董猛, 成永军. 橡胶材料在真空环境下的放气性能研究[C]//中国真空学会2014学术年会论文摘要集. 2014: 129-134

    Feng Yan, Dong Meng, Cheng Yongjun. Investigation of outgassing characteristic for synthetic rubber materials[C]//Proceedings of 2014 Academic Annual Meeting of the Chinese Vacuum Society. 2014: 129-134
  • 加载中
图(6)
计量
  • 文章访问数:  541
  • HTML全文浏览量:  211
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 修回日期:  2022-07-15
  • 录用日期:  2022-08-19
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回