留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
何安, 郭帆, 康军军, 等. 中能X光机触发系统[J]. 强激光与粒子束, 2022, 34: 115001. doi: 10.11884/HPLPB202234.220170
引用本文: 何安, 郭帆, 康军军, 等. 中能X光机触发系统[J]. 强激光与粒子束, 2022, 34: 115001. doi: 10.11884/HPLPB202234.220170
He An, Guo Fan, Kang Junjun, et al. Trigger system of the middle energy X-ray device[J]. High Power Laser and Particle Beams, 2022, 34: 115001. doi: 10.11884/HPLPB202234.220170
Citation: He An, Guo Fan, Kang Junjun, et al. Trigger system of the middle energy X-ray device[J]. High Power Laser and Particle Beams, 2022, 34: 115001. doi: 10.11884/HPLPB202234.220170

中能X光机触发系统

doi: 10.11884/HPLPB202234.220170
基金项目: 国家自然科学基金项目(51907181)
详细信息
    作者简介:

    何 安,hean66@tom.com

  • 中图分类号: O56; TL503

Trigger system of the middle energy X-ray device

  • 摘要: 介绍了中能X光机装置触发系统研制和相关实验结果,触发系统包括主机6个支路激光开关的触发和主机放电的触发。其中6个支路的触发由6台YAG四倍频激光器完成,主机放电电触发系统由1台YAG四倍频激光器来触发。实验结果表明:每台激光器出光时间抖动σ小于等于0.3 ns,激光开关导通延迟时间约25 ns,抖动σ小于等于1.2 ns,电触发系统中激光与触发器输出电压之间的时间抖动σ为0.5 ns,匹配负载上电压大于120 kV,前沿约28 ns,脉宽150 ns。中能X光机在杆箍缩二极管负载上获得最大输出为4.2 MV/100 kA的电脉冲,电压脉冲半高宽约55 ns,输出的X射线时间抖动σ为3.4 ns。实验结果表明触发系统具备对6个支路精确调节和控制的能力,确保了中能X光机装置的高可靠性。
  • 图  1  中能X光机装置技术路线示意图

    Figure  1.  Schematic diagram of the middle energy X-ray machine

    图  2  激光触发开关光路图

    Figure  2.  Path of the laser trigger switch

    图  3  光路管道和激光开关安装俯视图

    Figure  3.  Installation graph of laser tube and laser-switch

    图  4  电触发单元结构示意图

    Figure  4.  Layout of the electricity-trigger unit

    图  5  电触发单元和0号激光器实物图

    Figure  5.  Picture of the trigger unit and No.0-laser

    图  6  中能X光机触发控制时序图

    Figure  6.  Block diagram of triggering suquence for the middle energy X-ray device

    图  7  激光脉冲和触发器电压波形

    Figure  7.  Laser pulse and voltage waveform of trigger output

    图  8  中能X光机连续50发次实验输出X射线时间统计

    Figure  8.  Statistical delay time of the middle energy X-ray device for 50 consecutive shots

  • [1] Maenchen J, Cooperstein G, O’Malley J, et al. Advances in pulsed power-driven radiography systems[J]. Proceedings of the IEEE, 2004, 92(7): 1021-1042. doi: 10.1109/JPROC.2004.829056
    [2] Cunningham G S, Morris C. The development of flash radiography[J]. Los Alamos Science, 2003, 28: 76-91.
    [3] Ekdahl C. Modern electron accelerators for radiography[C]//PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No. 01CH37251). Las Vegas: IEEE, 2001.
    [4] Weinbrecht, E. A. Bloomquist, D. D. McDaniel, D. H, et al. Update of the Z refurbishment project (ZR) at Sandia National Laboratories [C]//16th IEEE International Pulsed Power Conference. 2007: 975-978.
    [5] Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—A review to the primary test stand and its preliminary application in high energy density physics[J]. Matter and Radiation at Extremes, 2016, 1(1): 48-58. doi: 10.1016/j.mre.2016.01.004
    [6] Smith I D, Bailey V L, Fockler J J, et al. Design of a radiographic integrated test stand (RITS) based on a voltage adder, to drive a diode immersed in a high magnetic field[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1653-1659. doi: 10.1109/27.901250
    [7] Weidenheimer D, Corcoran P, Altes R, et al. Design of a driver for the Cygnus X-ray source[C]//PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No. 01CH37251). Las Vegas: IEEE, 2001.
    [8] Ormond E C, ParralesM F, Garcia M R, et al. Cygnus system timing[C]//2019 IEEE Pulsed Power & Plasma Science (PPPS). 2019.
    [9] Thomas K, Beech P, Clough S, et al. The MERLIN induction voltage adder radiographic accelerator[C]//2017 IEEE 21st International Conference on Pulsed Power (PPC). Brighton: IEEE, 2017.
    [10] Raboisson G, Eyl P, Roche M, et al. Asterix, a high intensity X-ray generator[C]//7th Pulsed Power Conference. Monterey: IEEE, 1989.
    [11] Wei Hao, Yin Jiahui, Zhang Pengfei, et al. Development of a 4-MV, 80-kA-induction voltage adder for flash X-ray radiography[J]. IEEE Transactions on Plasma Science, 2019, 47(11): 5030-5036. doi: 10.1109/TPS.2019.2946685
    [12] Wei Hao, Yin Jiahui, Zhang Pengfei, et al. Simulation, experiment, and performance of a 4 MV induction voltage adder machine for flash X-ray radiography[J]. Physical Review Accelerators and Beams, 2021, 24: 020402. doi: 10.1103/PhysRevAccelBeams.24.020402
    [13] Bliss D E, Clark W T, LeChien K R, et al. A laser trigger system for ZR[C]//2007 IEEE 34th International Conference on Plasma Science (ICOPS). 2007: 638
    [14] He An, Li Fengping, Deng Jianjun, et al. Primary investigation into the laser triggering multi-gap multi-channel gas switch in a single test module facility[J]. Plasma Science and Technology, 2006, 8(5): 602-606. doi: 10.1088/1009-0630/8/5/25
    [15] 何安, 任济, 丰树平, 等. Z箍缩初级实验平台的激光触发系统[J]. 强激光与粒子束, 2012, 24(4):839-842 doi: 10.3788/HPLPB20122404.0839

    He An, Ren Ji, Feng Shuping, et al. Laser triggering system for Z-pinch primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(4): 839-842 doi: 10.3788/HPLPB20122404.0839
    [16] 何安, 丁瑜, 康军军, 等. 聚龙一号装置24路模块精确控制技术[J]. 强激光与粒子束, 2018, 30:035003 doi: 10.11884/HPLPB201830.170353

    He An, Ding Yu, Kang Junjun, et al. Accurate control technology of 24 modules in PTS[J]. High Power Laser and Particle Beams, 2018, 30: 035003 doi: 10.11884/HPLPB201830.170353
    [17] 夏明鹤, 计策, 王玉娟, 等. PTS装置工作模式及波形调节[J]. 强激光与粒子束, 2012, 24(11):2768-2772 doi: 10.3788/HPLPB20122411.2768

    Xia Minghe, Ji Ce, Wang Yujuan, et al. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772) doi: 10.3788/HPLPB20122411.2768
    [18] 周良骥, 何安, 丁瑜, 等. 40路可扩展高压脉冲触发器[J]. 强激光与粒子束, 2018, 30:095006 doi: 10.11884/HPLPB201830.170451

    Zhou Liangji, He An, Ding Yu, et al. Extendable high voltage trigger unit with 40 output cables[J]. High Power Laser and Particle Beams, 2018, 30: 095006 doi: 10.11884/HPLPB201830.170451
    [19] Chen Lin, Zou Wenkang, Jiang Jihao, et al. First results from a 760-GW linear transformer driver module for Z-pinch research[J]. Matter and Radiation at Extremes, 2021, 6: 045901. doi: 10.1063/5.0003346
    [20] 陈林, 田青, 周良骥, 等. 基于LTD的Z箍缩驱动器单路验证装置研制进展[C]//第七届全国脉冲功率会议暨第八届全国特种电源学术交流会论文集. 重庆, 2021

    Chen Lin, Tian Qing, Zhou Liangji, et al. The study advance of single module device base on LTD Z-Pinch[C]//7th National Pulsed Power Conference and 8th National Special Type Power Supply Conference. Chongqing, 2021
    [21] Xie Weiping, Xia Minghe, Guo Fan, et al. Design and performance of a pulsed power-driven X-ray source for flash radiography[J]. Physical Review Accelerators and Beams, 2021, 24: 110401. doi: 10.1103/PhysRevAccelBeams.24.110401
    [22] Zhao Yue, Xie Weiping, Jiang Jihao, et al. Replacement of Marx generator by Tesla transformer for pulsed power system reliability improvement[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 574-580. doi: 10.1109/TPS.2018.2873078
    [23] Geng Lidong, He Yang, Yuan Jianqiang, et al. Study on eccentricity effects of the rod-pinch diode radiography source[J]. Review of Scientific Instruments, 2019, 90: 023304. doi: 10.1063/1.5053739
  • 加载中
图(8)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  197
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-08-30
  • 网络出版日期:  2022-08-31
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回