留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S波段多注相对论速调管放大器长时间运行研究

黄华 李士锋 孙利民 谭杰 王朋 刘振帮 向启帆

黄华, 李士锋, 孙利民, 等. S波段多注相对论速调管放大器长时间运行研究[J]. 强激光与粒子束, 2022, 34: 113001. doi: 10.11884/HPLPB202234.220184
引用本文: 黄华, 李士锋, 孙利民, 等. S波段多注相对论速调管放大器长时间运行研究[J]. 强激光与粒子束, 2022, 34: 113001. doi: 10.11884/HPLPB202234.220184
Huang Hua, Li Shifeng, Sun Limin, et al. Longtime operation of S-band multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2022, 34: 113001. doi: 10.11884/HPLPB202234.220184
Citation: Huang Hua, Li Shifeng, Sun Limin, et al. Longtime operation of S-band multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2022, 34: 113001. doi: 10.11884/HPLPB202234.220184

S波段多注相对论速调管放大器长时间运行研究

doi: 10.11884/HPLPB202234.220184
基金项目: 国家高技术发展计划项目
详细信息
    作者简介:

    黄 华,hhua0457@163.com

  • 中图分类号: TN62

Longtime operation of S-band multi-beam relativistic klystron amplifier

  • 摘要: 为了实现高功率微波源低磁场及长时间稳定运行,开展了S波段GW级多注相对论速调管放大器(RKA)的理论模拟设计与实验研究。首先,采用一维大信号非线性理论软件优化设计了S波段4腔多注RKA,找到了器件工作的最佳参数:采用电压550 kV、束流4.7 kA的14注RKA,获得功率1.1 GW、效率43%的输出微波。随后,采用粒子模拟软件对理论设计的束波互作用参数进行了验证,获得了输出功率992 MW,器件效率为37%。最后,根据模拟参数开展了器件重频长时间运行实验研究。采用紧凑同轴Marx功率源驱动S波段四腔多注RKA,在电压530 kV、束流5.4 kA、重频20 Hz、运行时间1 s、引导磁场强度0.39 T、注入微波功率1.7 kW的条件下,获得了功率934 MW、脉宽69 ns的输出微波,束波转换效率33%。在器件重频20 Hz、运行时间10 min条件下,坚实了平均功率889 MW、平均脉宽42 ns的输出微波。该研究结果为S波段RKA的低磁场和长时间运行打下了的技术基础。
  • 图  1  AJDISK优化结果曲线

    Figure  1.  Optimization curves of AJDISK code

    图  2  4腔RKA三维仿真结构图

    Figure  2.  Three dimensions’ simulation diagram of four-cavity RKA

    图  3  CST中4腔RKA仿真的输出微波波形(a)和速度分布图(b)

    Figure  3.  Output microwave waveform (a) and electron velocity (b) of four-cavity RKA simulation by CST

    图  4  带水冷收集极的输出腔

    Figure  4.  Output cavity with water cooling collector

    图  5  RKA不同连续工作时间的输出微波波形

    Figure  5.  Output microwave waveforms at different working time. C3-detected waveform, C4-radio frequency waveform

    图  6  RKA重频20 Hz@10 min连续工作时最后一帧的输出微波波形

    Figure  6.  Last frame waveforms at 20 Hz@10 min. C3-detected waveform,C4-radio frequency waveform

    表  1  各谐振腔的高频参数

    Table  1.   High frequency parameters of cavities

    cavitygap
    width/mm
    (R/Q)/
    Ω
    Minitialization
    frequency/GHz
    input cavity14.013.20.8862.875
    idler cavity 1#12.014.20.8662.885
    idler cavity 2#13.515.20.8652.908
    output cavity16.018.10.8412.876
    下载: 导出CSV

    表  2  电压变化对电子束调制和器件效率的影响

    Table  2.   Voltage effects on electron beam modulation and device efficiency

    voltage/kVmodulation depthefficiency/%electron reversal (v/c)
    5201.1042.6−0.05
    5301.1040.9−0.08
    5401.1042.90
    5501.0943.60
    5601.0742.0−0.07
    5701.0440.%−0.17
    5800.9939.8−0.03
    下载: 导出CSV

    表  3  束流变化对电子束调制和器件效率的影响

    Table  3.   Current effects on electron beam modulation and device efficiency

    current/Amodulation depth (I1/Io)efficiency/%electron reversal (v/c)
    278×140.9837.00.25
    298×141.0440.0−0.03
    318×141.0842.0−0.04
    338×141.0943.60
    358×141.0942.0−0.13
    378×141.0840.9−0.12
    398×141.0743.5−0.16
    下载: 导出CSV

    表  4  4腔RKA高频系统参数与漂移管参数

    Table  4.   High frequency parameters and drifting tube parameter of four-cavity RKA

    cavitygap width/mmoscillation frequency/GHzaxial position/mm
    input cavity142.880
    idler cavity 1#122.89190
    idler cavity 2#13.52.936180
    output cavity162.879485
    下载: 导出CSV
  • [1] Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New York: Wiley-IEEE Press, 2001.
    [2] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2016.
    [3] Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave source[M]. Beijing: Atomic Press, 2007.
    [4] 黄华, 吴洋, 刘振帮, 等. 锁频锁相的高功率微波器件技术研究[J]. 物理学报, 2018, 67:088402 doi: 10.7498/aps.67.20172684

    Huang Hua, Wu Yang, Liu Zhenbang, et al. Review on high power microwave device with locked frequency and phase[J]. Acta Physica Sinica, 2018, 67: 088402 doi: 10.7498/aps.67.20172684
    [5] Sun Limin, Huang Hua, Li Shifeng, et al. Investigation on high-efficiency beam-wave interaction for coaxial multi-beam relativistic klystron amplifier[J]. Electronics, 2022, 11: 281. doi: 10.3390/electronics11020281
    [6] 黄华, 陈昭福, 袁欢, 等. S波段长脉冲相对论速调管重复频率运行稳定性研究[J]. 强激光与粒子束, 2020, 32:103002 doi: 10.11884/HPLPB202032.200167

    Huang Hua, Chen Zhaofu, Yuan Huan, et al. Research on stability of repetitive operation of S-band, long-pulse relativistic klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103002 doi: 10.11884/HPLPB202032.200167
    [7] Huang Hua, Chen Zhaofu, Li Shifeng, et al. Investigation on pulse-shortening of S-band, long pulse, four-cavity, high power relativistic klystron amplifier[J]. Physics of Plasmas, 2019, 26: 033107. doi: 10.1063/1.5086734
    [8] Li Shifeng, Huang Hua, Duan Zhaoyun, et al. Demonstration of a Ka-band oversized coaxial multi-beam relativistic klystron amplifier for high power millimeter-wave radiation[J]. IEEE Electron Device Letters, 2022, 43(1): 131-134. doi: 10.1109/LED.2021.3130170
    [9] Liu Zhenbang, Song Falun, Jin Hui, et al. Coherent combination of power in space with two X-band gigawatt coaxial multi-beam relativistic klystron amplifiers[J]. IEEE Electron Device Letters, 2022, 43(2): 284-287. doi: 10.1109/LED.2021.3137927
    [10] 丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社, 2008: 86-110

    Ding Yaogen. Theory and computer simulation of high power klystron[M]. Beijing: National Defense Industry Press, 2008: 86-110
    [11] Huang Hua, Jin Xiao, Lei Lurong, et al. High power and repetitively pulsed operation of a relativistic extended-interaction-cavity oscillator[C]//Proceedings of the 17th International Conference on High Power Particle Beams. Mianyang, China, 2008: 1-3.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  755
  • HTML全文浏览量:  266
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-12
  • 修回日期:  2022-08-12
  • 网络出版日期:  2022-08-16
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回