留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钨在瞬态热流下熔融重凝对脉冲参数的依赖性

屈苗 颜莎

屈苗, 颜莎. 钨在瞬态热流下熔融重凝对脉冲参数的依赖性[J]. 强激光与粒子束, 2022, 34: 126002. doi: 10.11884/HPLPB202234.220192
引用本文: 屈苗, 颜莎. 钨在瞬态热流下熔融重凝对脉冲参数的依赖性[J]. 强激光与粒子束, 2022, 34: 126002. doi: 10.11884/HPLPB202234.220192
Qu Miao, Yan Sha. Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow[J]. High Power Laser and Particle Beams, 2022, 34: 126002. doi: 10.11884/HPLPB202234.220192
Citation: Qu Miao, Yan Sha. Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow[J]. High Power Laser and Particle Beams, 2022, 34: 126002. doi: 10.11884/HPLPB202234.220192

钨在瞬态热流下熔融重凝对脉冲参数的依赖性

doi: 10.11884/HPLPB202234.220192
基金项目: 国家磁约束核聚变研究计划专项项目(2013GB109004)
详细信息
    作者简介:

    屈 苗,qum@cinis.com.cn

    通讯作者:

    颜 莎,syan@pku.edu.cn

  • 中图分类号: TL62.6

Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow

  • 摘要: 为了研究钨在瞬态热流下达到熔融状态后,不同脉冲参数对其熔融重凝行为的影响,实验观察了钨在脉宽5 ms与0.1 ms的脉冲辐照下熔融重凝行为的特征,并考虑熔融层流动驱动力、冷却速率、温度梯度等多项因素,分析了分层结构与柱状晶对热源参数的依赖性。通过计算两种热源参数下的热作用特性分析了钨在脉宽0.1 ms的脉冲辐照下出现柱状晶而在脉宽5 ms的脉冲辐照下未出现的原因。研究发现,高流强和短脉宽的脉冲束流易于促进形成分层结构,其原因是较高流强能引起材料表层熔化层流动,同时较短脉宽能使熔化层流痕来不及恢复平整,而被快速冷却固化;当样品在瞬态热流下发生熔化时,较短的脉宽有利于形成柱状晶,较长的脉宽有利于形成等轴晶粒和出现晶粒长大。
  • 图  1  钨在脉宽0.1 ms的CPF单脉冲辐照下SEM图及辐照示意图

    Figure  1.  SEM images and diagram of tungsten under compressed plasma flow (CPF) single pulse irradiation with pulse width of 0.1 ms

    图  2  钨在脉宽 0.1 ms的 CPF单脉冲辐照下钨截面的VCD图

    Figure  2.  VCD diagram of tungsten cross section under CPF single pulse irradiation with pulse width of 0.1 ms

    图  3  在能量密度为1.54 MJ/m2 脉宽0.1 ms的 CPF单脉冲辐照下钨表面的液滴和剥离结构的SEM图

    Figure  3.  SEM images of solidified droplet and stripping structure on tungsten under CPF single pulse irradiation with energy density of 1.54 MJ/m2 and pulse width of 0.1 ms

    图  4  钨在能量密度为3.82 MJ/m2 脉宽5 ms的30次IPEB脉冲辐照下SEM图及辐照示意图

    Figure  4.  SEM images and diagram of tungsten irradiated by 30 IPEB pulses with energy density of 3.82 MJ/m2 and pulse width of 5 ms

    图  5  钨在能量密度为3.82 MJ/m2脉宽5 ms的IPEB单脉冲辐照后5 ms时截面温度场分布

    Figure  5.  The cross-sectional temperature distribution of tungsten at 5 ms after IPEB single pulse irradiation with energy density of 3.82 MJ/m2 and pulse width of 5 ms

    图  6  钨在能量密度3.82 MJ/m2、脉宽5 ms的1~10次IPEB脉冲辐照后,表面中心点温度随时间的变化

    Figure  6.  The evolution of surface temperature with time at the center of irradiation area under 1-10 pulses of IPEB at 3.82 MJ/m2 energy density and 5 ms pulse width

    图  7  钨在能量密度3.82 MJ/m2、脉宽5 ms的1~10次IPEB脉冲辐照后,表面温度最高时纵向的温度分布

    Figure  7.  Distribution of temperature at the center of irradiation area with depth under 1-10 pulses of IPEB at 3.82 MJ/m2 energy density and 5 ms pulse width

    表  1  计算的脉宽5 ms与0.1 ms两种脉冲束流辐照钨的热作用特性

    Table  1.   The calculated thermal characteristics of tungsten irradiated by two kinds of pulse beams with pulse width of 5 ms and 0.1 ms

    particle
    type
    energy density/
    (MJ·m−2)
    pulse
    width/ms
    melting
    time/ms
    melting layer
    thickness/μm
    IPEB3.8251.360
    CPF1.20.10.093 32
    particle
    type
    temperature rise
    rate/(K·s−1)
    temperature drop
    rate/(K·s−1)
    maximum axial
    temperature gradient/(K·m−1)
    maximum radial
    temperature gradient/(K·m−1)
    IPEB5×1063×1064×1065×106
    CPF3×1086×1072×108
    下载: 导出CSV
  • [1] Li Yu. Thermo-mechanical behavior of tungsten under fusion-relevant hydrogen plasma loads[D]. Eindhoven: Technische Universiteit Eindhoven, 2021.
    [2] Matera R, Federici G, The ITER Joint Central Team. Design requirements for plasma facing materials in ITER[J]. Journal of Nuclear Materials, 1996, 233/237: 17-25. doi: 10.1016/S0022-3115(96)00317-0
    [3] 张洋. EAST装置偏滤器靶板的可靠性研究[D]. 合肥: 中国科学技术大学, 2019

    Zhang Yang. Research on reliability of EAST divertor targets[D]. Hefei: University of Science and Technology of China, 2019
    [4] Hassanein A, Sizyuk V. Potential design problems for ITER fusion device[J]. Scientific Reports, 2021, 11: 2069. doi: 10.1038/s41598-021-81510-2
    [5] Arshad K, Ding Dan, Wang Jun, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads[J]. Nuclear Materials and Energy, 2015, 3/4: 32-36. doi: 10.1016/j.nme.2015.05.001
    [6] Minissale M, Durif A, Kermouche G, et al. Grain growth and damages induced by transient heat loads on W[J]. Physica Scripta, 2021, 96: 124032. doi: 10.1088/1402-4896/ac27df
    [7] Makhlai V A, Garkusha I E, Herashchenko S S, et al. Contribution of leading edge shape to a damaging of castellated tungsten targets exposed to repetitive QSPA plasma loads[J]. Physica Scripta, 2021, 96: 124043. doi: 10.1088/1402-4896/ac2d86
    [8] Kasatov A A, Arakcheev A S, Burdakov A V, et al. Observation of dust particles ejected from tungsten surface under impact of intense transient heat load[J]. AIP Conference Proceedings, 2016, 1771: 060007.
    [9] 倪明玖. 磁约束核聚变反应堆研发相关的金属流体力学问题研究[J]. 中国科学:物理学 力学 天文学, 2013, 43(12):1570-1578

    Ni Mingjiu. Liquid metal hydrodynamics relevant to R&D of magnetocondined fusion reactor[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(12): 1570-1578
    [10] Makhlai V A, Herashchenko S S, Aksenov N N, et al. Damaging of inclined/misaligned castellated tungsten surfces exposed to a large number of repetitive QSPA plasma loads[J]. Physica Scripta, 2020, T171: 014047. doi: 10.1088/1402-4896/ab4e52
    [11] Wittlich K, Hirai T, Compan J, et al. Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads[J]. Fusion Engineering and Design, 2009, 84(7/11): 1982-1986.
    [12] Bazylev B, Janeschitz G, Landman I, et al. Behaviour of melted tungsten plasma facing components under ITER-like transient heat loads: simulations and experiments[J]. Fusion Engineering and Design, 2008, 83(7/9): 1077-1081.
    [13] Budaev V P, Martynenko Y V, Karpov A V, et al. Tungsten recrystallization and cracking under ITER-relevant heat loads[J]. Journal of Nuclear Materials, 2015, 463: 237-240. doi: 10.1016/j.jnucmat.2014.11.129
    [14] Garkusha I E, Bandura A N, Byrka O V, et al. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs[J]. Journal of Nuclear Materials, 2009, 386/388: 127-131. doi: 10.1016/j.jnucmat.2008.12.083
    [15] Kudaktsin R S, Astashynski V M, Kuzmitski A M. Characteristic features of the surface relief formation of metals modified by compression plasma flows[J]. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 2019, 23(3): 275-282. doi: 10.1615/HighTempMatProc.2019031163
    [16] Shymanski V I, Uglov V V, Cherenda N N, et al. Structure and phase composition of tungsten alloys modified by compression plasma flows and high-intense pulsed ion beam impacts[J]. Applied Surface Science, 2019, 491: 43-52. doi: 10.1016/j.apsusc.2019.06.113
    [17] Qu Miao, Kong Fanhang, Yan Sha, et al. Damages on pure tungsten irradiated by compression plasma flows[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 444: 33-37.
    [18] Li Changjun, Zhu Dahuan, Li Xiangbin, et al. Performance of W-1%Y2O3-0.5%Ti plasma-facing composite under fusion relevant transient heat flux[J]. Fusion Science and Technology, 2021, 77(4): 310-315. doi: 10.1080/15361055.2021.1874765
    [19] Lian Youyun, Liu Xiang, Cheng Zhengkui, et al. Thermal shock performance of CVD tungsten coating at elevated temperatures[J]. Journal of Nuclear Materials, 2014, 455(1/3): 371-375.
    [20] 彭广威, 刘健, 李理, 等. 定向凝固理论及技术的研究现状[J]. 铸造设备研究, 2005(4):44-47

    Peng Guangwei, Liu Jian, Li Li, et al. Progress of technic and theory of directional solidification[J]. Research Studies on Foundry Equipment, 2005(4): 44-47
    [21] 丁国陆, 黄卫东, 林鑫, 等. 定向凝固界面高梯度绝对稳定性的临界条件[J]. 自然科学进展——国家重点实验室通讯, 1996, 6(5):602-607

    Ding Guolu, Huang Weidong, Lin Xin, et al. Critical conditions for high gradient absolute stability of directional and solidification interfaces[J]. Progress in Natural Science: Communication of State Key Laboratories of China, 1996, 6(5): 602-607
    [22] Huang S C, Laforce R P, Ritter A M, et al. Rapid solidification characteristics in melt spinning a Ni-base superalloy[J]. Metallurgical Transactions A, 1985, 16(10): 1773-1779. doi: 10.1007/BF02670365
    [23] Kurz W, Trivedi R. Overview No. 87 Solidification microstructures: recent developments and future directions[J]. Acta Metallurgica et Materialia, 1990, 38(1): 1-17. doi: 10.1016/0956-7151(90)90129-5
    [24] 杨扬, 徐锦锋, 翟秋亚. 急冷条件下Cu-Sn合金的快速枝晶生长[J]. 中国有色金属学报, 2007, 17(9):1521-1526 doi: 10.3321/j.issn:1004-0609.2007.09.023

    Yang Yang, Xu Jinfeng, Zhai Qiuya. Rapid dendritic growth in melt-spun Cu−Sn alloys[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(9): 1521-1526 doi: 10.3321/j.issn:1004-0609.2007.09.023
    [25] 王刚, 安琳. COMSOL Multiphysics工程实践与理论仿真: 多物理场数值分析技术[M]. 北京: 电子工业出版社, 2012: 24-25

    Wang Gang, An Lin. Engineering practice and theoretical simulation in COMSOL Multiphysics: multi physical field numerical analysis technology[M]. Beijing: Publishing House of Electronics Industry, 2012: 24-25
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  527
  • HTML全文浏览量:  224
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-10-14
  • 录用日期:  2022-10-19
  • 网络出版日期:  2022-10-22
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回