留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静力水准系统用于基准高差测量的研究

李笑 何晓业 王巍 程竹兵 高廷 罗涛

李笑, 何晓业, 王巍, 等. 静力水准系统用于基准高差测量的研究[J]. 强激光与粒子束, 2022, 34: 124003. doi: 10.11884/HPLPB202234.220195
引用本文: 李笑, 何晓业, 王巍, 等. 静力水准系统用于基准高差测量的研究[J]. 强激光与粒子束, 2022, 34: 124003. doi: 10.11884/HPLPB202234.220195
Li Xiao, He Xiaoye, Wang Wei, et al. Research on measurement method of altitude difference using hydrostatic leveling system[J]. High Power Laser and Particle Beams, 2022, 34: 124003. doi: 10.11884/HPLPB202234.220195
Citation: Li Xiao, He Xiaoye, Wang Wei, et al. Research on measurement method of altitude difference using hydrostatic leveling system[J]. High Power Laser and Particle Beams, 2022, 34: 124003. doi: 10.11884/HPLPB202234.220195

静力水准系统用于基准高差测量的研究

doi: 10.11884/HPLPB202234.220195
基金项目: 合肥大科学中心协同创新培育基金20年(2020HSC-CIP007)
详细信息
    作者简介:

    李 笑,lx520@mail.ustc.edu.cn

    通讯作者:

    何晓业,xyhe@ustc.edu.cn

    王 巍,wangwei0829@ustc.edu.cn

  • 中图分类号: TL505

Research on measurement method of altitude difference using hydrostatic leveling system

  • 摘要: 为了拓展静力水准系统(HLS)在粒子加速器准直测量工作中的应用,开展了针对HLS系统用于多点间基于水平面的基准高差测量的实现方法的研究。基于传感器工作原理,设计并搭建了一套由双频激光干涉仪、高精度位移平台、HLS传感器等组成的比对系统,利用该系统控制多传感器在同一坐标系下观测同一液位。通过比对获得多传感器间基于底部坐标系的零位高度差,实现了多个传感器坐标系间相对于水平面的高差值测量,并验证了高差测量精度优于5 μm。除此之外,通过在HLS传感器上方安装靶座,使用三坐标测量机(CMM)严格标定各传感器电极板至靶球球心的距离,实现了多靶球球心位置基于水平面的高差值测量,并验证了其测量精度优于30 μm。
  • 图  1  电容式HLS传感器测量原理

    Figure  1.  Measurement principle of capacitive HLS sensor

    图  2  零位差比对平台

    Figure  2.  The zero-difference comparison platform

    图  3  零位差比对原理示意图

    Figure  3.  Schematic diagram of zero-difference comparison

    图  4  基准传感器重复精度

    Figure  4.  Repeatability of the reference sensor

    图  5  Nivel传感器测量原理

    Figure  5.  Principle of operation of a Nivel sensor

    图  6  HLS传感器坐标系建立

    Figure  6.  Construction of the HLS coordinate system

    图  7  传感器坐标系间绝对高差测量结果

    Figure  7.  Absolute altitude difference measurement results between sensor coordinate systems

    图  8  H值标定

    Figure  8.  Calibration of the value of H

    图  9  靶球中心基准高差测量

    Figure  9.  Height difference measurement results between target centers

    图  10  靶球中心基准高差测量偏差

    Figure  10.  Measurement errors of height difference between target centers

    表  1  HLS传感器读数

    Table  1.   Values of the HLS sensors reading

    sensor numberssensor readings/μm
    first readingsecond readingthird readingaverage
    337527.27527.17525.37526.5
    367527.07526.07525.77526.2
    327536.57536.07536.97536.5
    387532.87533.07533.17533.0
    447528.47528.27529.37528.6
    下载: 导出CSV

    表  2  倾斜仪读数及d

    Table  2.   Values of the tilt and d

    sensor numberstilt/mradcorrection/μmd/μm
    330.0007526.5−26.5
    360.0007526.2−26.2
    320.0017536.2−36.2
    380.0047531.7−31.7
    440.0017528.3−28.3
    下载: 导出CSV

    表  3  H标定值

    Table  3.   Calibration value of H

    numbers H/μm
    32 109668.96
    33 109615.64
    38 109401.21
    41 109414.31
    44 109439.87
    下载: 导出CSV

    表  4  CMM及HLS传感器测量值

    Table  4.   Measurement values of CMM and HLS sensors

    sensor numbersvalues/μm
    target center-plane HD
    3294064.349005.33
    3394012.289012.24
    3893795.389013.84
    4193832.269011.95
    4493834.949019.77
    下载: 导出CSV
  • [1] 王铜, 周维虎, 董岚, 等. 粒子加速器中激光跟踪仪控制网测量精度研究[J/OL]. 武汉大学学报(信息科学版), 2021: 1-14(2021-11-09)[2022-06-05]. http://kns.cnki.net/kcms/detail/42.1676.TN.20211108.1835.004.html.

    Wang Tong, Zhou Weihu, Dong Lan, et al. Research on the accuracy of control network measured by laser tracker in particle accelerator[J/OL]. Geomatics and Information Science of Wuhan University, 2021: 1-14(2021-11-09)[2022-06-05]. http://kns.cnki.net/kcms/detail/42.1676.TN.20211108.1835.004.html
    [2] 张海艇, 何晓业, 王巍, 等. 基于合肥先进光源的准直参考网络机械系统设计及其仿真分析[J]. 强激光与粒子束, 2020, 32:084003 doi: 10.11884/HPLPB202032.200003

    Zhang Haiting, He Xiaoye, Wang Wei, et al. Design and simulation analysis of mechanical system of reference network for alignment based on Hefei Advanced Lightsource Facility[J]. High Power Laser and Particle Beams, 2020, 32: 084003 doi: 10.11884/HPLPB202032.200003
    [3] 郭迎钢, 李宗春, 李广云, 等. 粒子加速器工程控制网研究进展与展望[J]. 测绘通报, 2020(1):136-141 doi: 10.13474/j.cnki.11-2246.2020.0029

    Guo Yinggang, Li Zongchun, Li Guangyun, et al. Progress and prospect of engineering control network for particle accelerator[J]. Bulletin of Surveying and Mapping, 2020(1): 136-141 doi: 10.13474/j.cnki.11-2246.2020.0029
    [4] 于成浩, 殷立新, 杜涵文, 等. 上海光源准直测量方案设计[J]. 强激光与粒子束, 2006, 18(7):1167-1172

    Yu Chenghao, Yin Lixin, Du Hanwen, et al. Survey and alignment design of Shanghai synchrotron radiation facility[J]. High Power Laser and Particle Beams, 2006, 18(7): 1167-1172
    [5] Wang Zhaoyi, Luo Tao, Wang Wei, et al. Fixing positions and orientations of laser trackers during bundle adjustment in multi-station measurements[J]. Measurement Science and Technology, 2021, 32: 035017. doi: 10.1088/1361-6501/abcd6b
    [6] 罗涛, 何晓业, 汪昭义, 等. 粒子加速器隧道准直测量中激光跟踪仪光束法平差的误差分析和应用研究[J/OL]. 武汉大学学报(信息科学版), 2021: 1-13(2021-11-10)[2022-06-05]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13203/j.whugis20200718.

    Luo Tao, He Xiaoye, Wang Zhaoyi, et al. Error analysis and application research on laser tracker’s bundle adjustment in the tunnel alignment measurement of particle accelerator[J/OL]. Geomatics and Information Science of Wuhan University, 2021: 1-13(2021-11-10)[2022-06-05]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13203/j.whugis20200718
    [7] 王小龙, 康玲, 董岚, 等. 加速器准直控制网数据处理误差累积研究[J]. 核技术, 2021, 44(9):23-31 doi: 10.11889/j.0253-3219.2021.hjs.44.090201

    Wang Xiaolong, Kang Ling, Dong Lan, et al. Data processing error accumulation of accelerator alignment control network[J]. Nuclear Techniques, 2021, 44(9): 23-31 doi: 10.11889/j.0253-3219.2021.hjs.44.090201
    [8] 王铜, 董岚, 梁静, 等. 中国散裂中子源准直控制网数据处理方法[J]. 强激光与粒子束, 2021, 33:104002 doi: 10.11884/HPLPB202133.210096

    Wang Tong, Dong Lan, Liang Jing, et al. Adjustment method of control network for alignment in CSNS[J]. High Power Laser and Particle Beams, 2021, 33: 104002 doi: 10.11884/HPLPB202133.210096
    [9] Zhang Chao, Azumi N, Fukami K, et al. Magnet alignment monitoring system with eigenfrequency-based wire sag correction[J]. Measurement Science and Technology, 2021, 32: 075009. doi: 10.1088/1361-6501/abe5e4
    [10] Choi H J, Seo K W, Gil K H, et al. Use of the BINP HLS to measure vertical changes in the locations of the building and ground at the PAL-XFEL[J]. Journal of the Korean Physical Society, 2016, 69(6): 998-1004. doi: 10.3938/jkps.69.998
    [11] 何晓业. 静力水准系统在大科学工程中的应用及发展趋势[J]. 核科学与工程, 2006, 26(4):332-336 doi: 10.3321/j.issn:0258-0918.2006.04.009

    He Xiaoye. Application of hydrostatic leveling system in key scientific engineering and its developing tendency[J]. Chinese Journal of Nuclear Science and Engineering, 2006, 26(4): 332-336 doi: 10.3321/j.issn:0258-0918.2006.04.009
    [12] 张强, 何晓业, 唐郑, 等. 用于粒子加速器位置监测的静力水准系统与线位置探测器的比对研究[J]. 原子能科学技术, 2017, 51(8):1532-1536 doi: 10.7538/yzk.2016.youxian.0734

    Zhang Qiang, He Xiaoye, Tang Zheng, et al. Comparison of hydrostatic leveling system and wire position sensor for position monitoring in particle accelerator[J]. Atomic Energy Science and Technology, 2017, 51(8): 1532-1536 doi: 10.7538/yzk.2016.youxian.0734
    [13] 何晓业, 汪鹏, 许少峰, 等. 静力水准传感器中厚膜陶瓷电容传感器的研制[J]. 中国科技论文, 2014, 9(1):40-44 doi: 10.3969/j.issn.2095-2783.2014.01.008

    He Xiaoye, Wang Peng, Xu Shaofeng, et al. Development of thick film ceramic capacitor in hydrostatic levelling sensor[J]. China Science Paper, 2014, 9(1): 40-44 doi: 10.3969/j.issn.2095-2783.2014.01.008
    [14] Volk J, Hansen S, Johnson T, et al. Hydrostatic level sensors as high precision ground motion instrumentation for Tevatron and other energy frontier accelerators[J]. Journal of Instrumentation, 2012, 7: P01004.
    [15] 胡现辉. 徕卡NIVEL200系列电子水平仪在桥梁变形监测中的应用[J]. 测绘通报, 2007(6):73-74 doi: 10.3969/j.issn.0494-0911.2007.06.021

    Hu Xianhui. Application of leica NIVEL200 electronic level in bridge deformation monitoring[J]. Bulletin of Surveying and Mapping, 2007(6): 73-74 doi: 10.3969/j.issn.0494-0911.2007.06.021
    [16] Li Xiao, He Xiaoye, Wang Zhaoyi, et al. Conceptual design and theoretical analysis of a system: The reference network of alignment[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1011: 165582. doi: 10.1016/j.nima.2021.165582
    [17] 何晓业, 黄开席, 陈森玉, 等. 压力和温度对静力水准系统精度影响分析[J]. 核技术, 2006, 29(5):321-325 doi: 10.3321/j.issn:0253-3219.2006.05.001

    He Xiaoye, Huang Kaixi, Chen Senyu, et al. Analysis of influence of pressure and temperature on HLS[J]. Nuclear Techniques, 2006, 29(5): 321-325 doi: 10.3321/j.issn:0253-3219.2006.05.001
    [18] Touzé T. Feasibility of the CLIC metrological reference network[C]//International Workshop on Accelerators Alignment. 2010.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  613
  • HTML全文浏览量:  208
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 修回日期:  2022-07-27
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回