留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
徐秋月, 周佳欣, 单连强, 等. D3He爆推靶质子源优化模拟研究[J]. 强激光与粒子束, 2022, 34: 122003. doi: 10.11884/HPLPB202234.220199
引用本文: 徐秋月, 周佳欣, 单连强, 等. D3He爆推靶质子源优化模拟研究[J]. 强激光与粒子束, 2022, 34: 122003. doi: 10.11884/HPLPB202234.220199
Xu Qiuyue, Zhou Jiaxin, Shan Lianqiang, et al. Optimized simulation of D3He proton source for exploding pusher target[J]. High Power Laser and Particle Beams, 2022, 34: 122003. doi: 10.11884/HPLPB202234.220199
Citation: Xu Qiuyue, Zhou Jiaxin, Shan Lianqiang, et al. Optimized simulation of D3He proton source for exploding pusher target[J]. High Power Laser and Particle Beams, 2022, 34: 122003. doi: 10.11884/HPLPB202234.220199

D3He爆推靶质子源优化模拟研究

doi: 10.11884/HPLPB202234.220199
基金项目: 国家自然科学基金项目(11875048,11905203) ;等离子体物理重点实验室基金项目(6142A04200104)
详细信息
    作者简介:

    徐秋月,3501981762@qq.com

    通讯作者:

    单连强,slqiang@caep.ac.cn

  • 中图分类号: O539

Optimized simulation of D3He proton source for exploding pusher target

  • 摘要: 为了在百kJ高功率激光装置上建立D3He质子照相平台,采用一维辐射流体程序Helios-CR对D3He爆推靶质子产生进行了模拟,综合考虑多种因素给出在百千焦高功率激光装置上开展质子照相所需要的激光和靶球建议参数。结合激光装置现有条件,分析了在1015 W/cm2左右激光强度下D3He质子产额随靶球半径、激光强度、充气压力和SiO2球壳厚度等参数的变化规律,给出了靶球半径300 μm,内充D3He气体压强1.8 MPa,SiO2球壳厚度3.5 μm左右等优化参数,预计此条件下D3He质子产额可达109~1010。通过模拟得到的质子产额变化规律,为质子照相平台的正式建立和实验参数选取提供了参考。
  • 图  1  D3He质子照相示意图

    Figure  1.  Schematic diagram of D3He proton radiography

    图  2  爆推靶流线图、质子产额和激光波形

    Figure  2.  Streamline diagram of exploding pusher target, time-integrated fusion proton yield (blue line) and laser time profile (black line)

    图  3  质子产额和最大压缩时刻D3He外半径随初始内半径变化趋势

    Figure  3.  Proton yield and D3He outer radius at peak compression (Rp) versus initial radius

    图  4  质子产额和离子温度随激光能量变化关系

    Figure  4.  Proton yield and ion temperature versus laser energy

    图  5  质子产额和离子温度随充气压强的变化趋势

    Figure  5.  Proton yield and ion temperature versus gas pressure

    图  6  离子平均碰撞自由程和Knudsen数随充气压强的变化趋势

    Figure  6.  Ion mean free path and Knudsen number versus gas pressure

    图  7  质子产额和离子温度随SiO2厚度的变化趋势

    Figure  7.  Proton yield and ion temperature versus thickness of SiO2

    图  8  优化的SiO2壳厚度和质子产额随激光能量变化趋势

    Figure  8.  Optimum thickness of SiO2 shell and proton yield versus laser energy

    图  9  靶球表面光强分布

    Figure  9.  Laser intensity distribution on the surface of exploding pusher target

  • [1] Li C K, Séguin F H, Rygg J R, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 2008, 100: 225001. doi: 10.1103/PhysRevLett.100.225001
    [2] Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
    [3] Zylstra A B, Li C K, Rinderknecht H G, et al. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions[J]. Review of Scientific Instruments, 2012, 83: 013511. doi: 10.1063/1.3680110
    [4] Li C K, Séguin F H, Frenje J A, et al. Charged-particle probing of X-ray–driven inertial-fusion implosions[J]. Science, 2010, 327(5970): 1231-1235. doi: 10.1126/science.1185747
    [5] Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
    [6] Manuel M J E, Zylstra A B, Rinderknecht H G, et al. Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA[J]. Review of Scientific Instruments, 2012, 83: 063506. doi: 10.1063/1.4730336
    [7] Rygg J R, Zylstra A B, Séguin F H, et al. Note: a monoenergetic proton backlighter for the National Ignition Facility[J]. Review of Scientific Instruments, 2015, 86: 116104. doi: 10.1063/1.4935581
    [8] Manuel M J E, Li C K, Séguin F H, et al. First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas[J]. Physical Review Letters, 2012, 108: 255006. doi: 10.1103/PhysRevLett.108.255006
    [9] Rigg P A, Schwartz C L, Hixson R S, et al. Proton radiography and accurate density measurements: a window into shock wave processes[J]. Physical Review B, 2008, 77: 220101(R). doi: 10.1103/PhysRevB.77.220101
    [10] Li C K, Séguin F H, Frenje J A, et al. Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas[J]. Physical Review Letters, 2007, 99: 055001. doi: 10.1103/PhysRevLett.99.055001
    [11] Frenje J A, Grabowski P E, Li C K, et al. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas[J]. Physical Review Letters, 2015, 115: 205001. doi: 10.1103/PhysRevLett.115.205001
    [12] Zylstra A B, Frenje J A, Grabowski P E, et al. Measurement of charged-particle stopping in warm dense plasma[J]. Physical Review Letters, 2015, 114: 215002. doi: 10.1103/PhysRevLett.114.215002
    [13] Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255. doi: 10.1016/j.mre.2017.07.004
    [14] Séguin F H, Frenje J A, Li C K, et al. Spectrometry of charged particles from inertial-confinement-fusion plasmas[J]. Review of Scientific Instruments, 2003, 74(2): 975-995. doi: 10.1063/1.1518141
    [15] 滕建, 赵宗清, 丁永坤, 等. 基于D3He反应产生的单能质子对ICF内爆过程的照相模拟研究[J]. 强激光与粒子束, 2011, 23(1):137-140 doi: 10.3788/HPLPB20112301.0137

    Teng Jian, Zhao Zongqing, Ding Yongkun, et al. Simulation of D3He fusion monoenergetic proton radiography of ICF implosions[J]. High Power Laser and Particle Beams, 2011, 23(1): 137-140 doi: 10.3788/HPLPB20112301.0137
    [16] MacFarlane J J, Golovkin I E, Woodruff P R. HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 99(1/3): 381-397.
    [17] Miles A R, Chung H K, Heeter R, et al. Numerical simulation of thin-shell direct drive DHe3-filled capsules fielded at OMEGA[J]. Physics of Plasmas, 2012, 19: 072702. doi: 10.1063/1.4737052
    [18] Rosenberg M J, Zylstra A B, Séguin F H, et al. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platform at the National Ignition Facility[J]. High Energy Density Physics, 2016, 18: 38-44. doi: 10.1016/j.hedp.2016.01.001
    [19] 张钧, 姜荣洪, 曾先才. 爆炸推进层靶的理论模型[J]. 核聚变与等离子体物理, 1988, 8(4):207-211 doi: 10.16568/j.0254-6086.1988.04.003

    Zhang Jun, Jiang Ronghong, Zeng Xiancai. A theoretical model of exploding pusher targets[J]. Nuclear Fusion and Plasma Physics, 1988, 8(4): 207-211 doi: 10.16568/j.0254-6086.1988.04.003
    [20] Dodd E S, Benage J F, Kyrala G A, et al. The effects of laser absorption on direct-drive capsule experiments at OMEGA[J]. Physics of Plasmas, 2012, 19: 042703. doi: 10.1063/1.3700187
    [21] Laffite S, Bourgade J L, Caillaud T, et al. Time history prediction of direct-drive implosions on the Omega facility[J]. Physics of Plasmas, 2016, 23: 012706. doi: 10.1063/1.4939833
    [22] Richardson M C, Craxton R S, Delettrez J, et al. Absorption physics at 351 nm in spherical geometry[J]. Physical Review Letters, 1985, 54(15): 1656-1659. doi: 10.1103/PhysRevLett.54.1656
    [23] Storm E K, Larsen J T, Nuckolls J H, et al. Simple scaling model for exploding pusher targets[R]. UCRL-79788, 1977.
    [24] Garban-Labaune C, Fabre E, Max C E, et al. Effect of laser wavelength and pulse duration on laser-light absorption and back reflection[J]. Physical Review Letters, 1982, 48(15): 1018-1021. doi: 10.1103/PhysRevLett.48.1018
    [25] Kitagawa Y, Miyanaga N, Kato Y, et al. Optimum design of exploding pusher target to produce maximum neutrons[J]. Japanese Journal of Applied Physics, 1986, 25(4R): 586-589.
    [26] 单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004 doi: 10.11884/HPLPB202133.200235

    Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004 doi: 10.11884/HPLPB202133.200235
    [27] Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: present understanding and future directions[J]. Plasma Physics and Controlled Fusion, 2018, 60: 064001. doi: 10.1088/1361-6587/aab79f
    [28] Hoffman N M, Zimmerman G B, Molvig K, et al. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions[J]. Physics of Plasmas, 2015, 22: 052707. doi: 10.1063/1.4921130
    [29] Rosenberg M J, Rinderknecht H G, Hoffman N M, et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions[J]. Physical Review Letters, 2014, 112: 185001. doi: 10.1103/PhysRevLett.112.185001
    [30] Rosenberg M J, Zylstra A B, Séguin F H, et al. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF[J]. Physics of Plasmas, 2014, 21: 122712. doi: 10.1063/1.4905064
    [31] Rygg J R, Frenje J A, Li C K, et al. Observations of the collapse of asymmetrically driven convergent shocks[J]. Physics of Plasmas, 2008, 15: 034505. doi: 10.1063/1.2892025
    [32] Johnson T M, Birkel A, Ramirez H E, et al. Yield degradation due to laser drive asymmetry in D3He backlit proton radiography experiments at OMEGA[J]. Review of Scientific Instruments, 2021, 92: 043551. doi: 10.1063/5.0043004
    [33] Skupsky S, Marozas J A, Craxton R S, et al. Polar direct drive on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(5): 2763-2770. doi: 10.1063/1.1689665
    [34] Tian Chao, Chen Jia, Zhang Bo, et al. High direct drive illumination uniformity achieved by multi-parameter optimization approach: a case study of Shenguang III laser facility[J]. Optics Express, 2015, 23(9): 12362-12372. doi: 10.1364/OE.23.012362
    [35] 田超, 单连强, 周维民, 等. 神光Ⅲ原型装置直接驱动均匀辐照设计及在快点火中的潜在应用[J]. 强激光与粒子束, 2015, 27:092010 doi: 10.11884/HPLPB201527.092010

    Tian Chao, Shan Lianqiang, Zhou Weimin, et al. Optimization of illumination uniformity of Shenguang Ⅲ prototype facility and its potential application in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27: 092010 doi: 10.11884/HPLPB201527.092010
    [36] Ramis R, Temporal M, Canaud B, et al. Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility[J]. Physics of Plasmas, 2014, 21: 082710. doi: 10.1063/1.4893311
  • 加载中
图(9)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  234
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-10-07
  • 录用日期:  2022-10-11
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回