留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al、Nd对Cr12MoV钢表面镍基熔覆层的组织及性能影响

王泽达 周后明 朱宇旭 何方佳 向南鑫 王宇豪

王泽达, 周后明, 朱宇旭, 等. Al、Nd对Cr12MoV钢表面镍基熔覆层的组织及性能影响[J]. 强激光与粒子束, 2022, 34: 121005. doi: 10.11884/HPLPB202234.220205
引用本文: 王泽达, 周后明, 朱宇旭, 等. Al、Nd对Cr12MoV钢表面镍基熔覆层的组织及性能影响[J]. 强激光与粒子束, 2022, 34: 121005. doi: 10.11884/HPLPB202234.220205
Wang Zeda, Zhou Houming, Zhu Yuxu, et al. Effect of Al and Nd on microstructure and properties of nickel-based cladding layer on Cr12MoV steel surface[J]. High Power Laser and Particle Beams, 2022, 34: 121005. doi: 10.11884/HPLPB202234.220205
Citation: Wang Zeda, Zhou Houming, Zhu Yuxu, et al. Effect of Al and Nd on microstructure and properties of nickel-based cladding layer on Cr12MoV steel surface[J]. High Power Laser and Particle Beams, 2022, 34: 121005. doi: 10.11884/HPLPB202234.220205

Al、Nd对Cr12MoV钢表面镍基熔覆层的组织及性能影响

doi: 10.11884/HPLPB202234.220205
基金项目: 湖南省省自然科学基金资助项目(2020JJ45 85); 湖南省教育厅基金(21A0117); 广东省科技厅(2020B12120 600 67)
详细信息
    作者简介:

    王泽达,961324616@qq.com

  • 中图分类号: TG665

Effect of Al and Nd on microstructure and properties of nickel-based cladding layer on Cr12MoV steel surface

  • 摘要: 为了解决Cr12MoV钢溶蚀、表面碎裂等问题,利用Al-Ni、Nd-Ni粉末在Cr12MoV钢上进行激光熔覆实验,研究了Al、Nd对镍基覆层的宏微观形貌、组织及表面性能的影响。结果表明:Al可以减少熔覆层裂纹的产生,同时降低覆层硬度,使熔覆层中产生具有减磨作用的硬质相Al2O3等,降低覆层磨损量,14%Al覆层磨损量比2%Al的覆层磨损量低44.5%,Al较优质量分数为14%;Nd的晶粒细化作用明显,显著提升覆层显微硬度,2.5%Nd覆层平均硬度比基体平均硬度高36.8%,Nd较优质量分数为2.5%。
  • 图  1  不同Al质量分数熔覆层宏观形貌图

    Figure  1.  Macro topography of the coatings with different Al mass fraction

    图  2  不同Al含量熔覆层SEM形貌

    Figure  2.  SEM morphology of coatings with different amounts of Al

    图  3  不同Al含量熔覆层显微硬度沿层深的分布曲线

    Figure  3.  Distribution curve of microhardness along the depth of the coating with different Al supplemental levels

    图  4  不同Al含量熔覆层XRD谱

    Figure  4.  XRD spectra of coatings with different amounts of Al

    图  5  不同Al含量熔覆层摩擦因数及磨损量图

    Figure  5.  Plot of friction coefficient and wear value of cladding layer

    图  6  不同Al含量熔覆层磨损表面形貌图

    Figure  6.  Worn surface morphology of coatings with different mass fraction of Al addition

    图  7  不同Nd含量熔覆层宏观形貌图

    Figure  7.  Macro topography of the coatings with different Al addition

    图  8  不同Nd含量熔覆层SEM形貌和XRD谱

    Figure  8.  SEM morphology and XRD spectra of coatings with different Nd additions

    图  9  不同Nd含量熔覆层硬度沿层深的分布曲线

    Figure  9.  Hardness distribution curve of laser cladding samples with different Nd addition levels along the layer depth

    图  10  不同Nd含量熔覆层摩擦因数及磨损率

    Figure  10.  Friction coefficient and wear rate of cladding layer

    图  11  不同Nd含量熔覆层磨损表面形貌图

    Figure  11.  Worn surface morphology of coatings with different mass fraction of Nd addition

    表  1  Cr12MoV钢化学成分

    Table  1.   Toughening chemical composition of Cr12MoV

    composition mass fraction/%
    C 0.15
    V 0.50
    Si 0.25
    Mo 0.30
    Cr 11
    Mn 0.55
    Fe The rest
    下载: 导出CSV

    表  2  NFZCr-4镍基合金粉末化学成分(%)

    Table  2.   Chemical composition of NFZCR-4 Ni-base alloy powder (%)

    composition mass fraction/%
    Si 3
    B 3
    Cr 18
    Fe 4
    C 0.6
    Ni The rest
    下载: 导出CSV
  • [1] Sun Fei, Zhang Dongqiao, Cheng Ling, et al. Microstructure evolution modeling and simulation for dynamic recrystallization of Cr12MoV die steel during hot compression based on real metallographic image[J]. Metals and Materials International, 2019, 25(4): 966-981. doi: 10.1007/s12540-019-00249-8
    [2] Abdulhadi H A, Aqida S N, Ishak M, et al. Thermal fatigue of die-casting dies: an overview[J]. MATEC Web of Conferences, 2016, 74: 00032. doi: 10.1051/matecconf/20167400032
    [3] Hong Sheng, Wu Yuping, Wang Bo, et al. Improvement in tribological properties of Cr12MoV cold work die steel by HVOF sprayed WC-CoCr cermet coatings[J]. Coatings, 2019, 9: 825. doi: 10.3390/coatings9120825
    [4] Courant B, Hantzpergue J J, Benayoun S. Surface treatment of titanium by laser irradiation to improve resistance to dry-sliding friction[J]. Wear, 1999, 236(1/2): 39-46.
    [5] Liu Shenglin, Zheng Xueping, Geng Gangqiang. Dry sliding wear behavior and corrosion resistance of NiCrBSi coating deposited by activated combustion-high velocity air fuel spray process[J]. Materials & Design, 2010, 31(2): 913-917.
    [6] Liu Yanan, Ding Ye, Yang Lijun, et al. Research and progress of laser cladding on engineering alloys: a review[J]. Journal of Manufacturing Processes, 2021, 66: 341-363. doi: 10.1016/j.jmapro.2021.03.061
    [7] Huang Lei, Zhou Jianzhong, Xu Jiale, et al. Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating[J]. Surface and Coatings Technology, 2020, 395: 125876. doi: 10.1016/j.surfcoat.2020.125876
    [8] Ye Hong, Peng Shixin, Yan Zhonglin, et al. Microstructure and properties of laser cladding Fe-Al intermetallics[J]. Advanced Materials Research, 2013, 659: 39-42. doi: 10.4028/www.scientific.net/AMR.659.39
    [9] Bourahima F, Helbert A L, Rege M, et al. Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: Influence of the process parameters on bonding quality and coating geometry[J]. Journal of Alloys and Compounds, 2019, 771: 1018-1028. doi: 10.1016/j.jallcom.2018.09.004
    [10] Quazi M M, Fazal M A, Haseeb A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review[J]. Journal of Rare Earths, 2016, 34(6): 549-564. doi: 10.1016/S1002-0721(16)60061-3
    [11] Zou Honghui, Zeng Xiaoqin, Zhai Chunquan, et al. Effects of ND on the microstructure and mechanical property of ZA52 alloy[J]. Materials Science Forum, 2005, 488/489: 161-164.
    [12] 庞铭, 刘全秀. 超高强钢表面激光和等离子制备钕和镍基复合涂层界面的控形模拟研究[J]. 热加工工艺, 2021, 50(2):111-116 doi: 10.14158/j.cnki.1001-3814.20200157

    Pang Ming, Liu Quanxiu. Simulation study on morphology control of interface to composite coatings of neodymium and nickel-based alloy applied by plasma spraying and laser on super-strength steel[J]. Hot Working Technology, 2021, 50(2): 111-116 doi: 10.14158/j.cnki.1001-3814.20200157
    [13] Feng Xiaoli, Wang Haifeng, Liu Xuechao, et al. Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding[J]. Surface and Coatings Technology, 2021, 412: 126976. doi: 10.1016/j.surfcoat.2021.126976
    [14] Jiang Huiren, Hirohasi M, Lu Yun, et al. Effect of Nb on the high temperature oxidation of Ti–(0–50 at. %) Al[J]. Scripta Materialia, 2002, 46(9): 639-643. doi: 10.1016/S1359-6462(02)00042-8
    [15] Ansara I, Dupin N, Lukas H L, et al. Thermodynamic assessment of the Al-Ni system[J]. Journal of Alloys and Compounds, 1997, 247(1/2): 20-30.
    [16] Wang Di, Song Changhui, Yang Yongqiang, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials & Design, 2016, 100: 291-299.
    [17] 袁涛, 蔡养川, 罗震, 等. Al2O3陶瓷颗粒对镍基合金涂层耐磨性能的影响[J]. 上海交通大学学报, 2016, 50(10):1635-1639

    Yuan Tao, Cai Yangchuan, Luo Zhen, et al. Effect of Al2O3 composite ceramic reinforcement on wear behavior of laser cladding Ni-based alloys coatings[J]. Journal of Shanghai Jiaotong University, 2016, 50(10): 1635-1639
    [18] Singh K, Sharma S. Effect of rare earth on microstructure and wear behaviour of Ni based microwave clad[J]. Indian Journal of Engineering and Materials Sciences 2020, 27(3): 564-572.
    [19] Yu Youjun, Zhou Jiansong, Chen Jianmin, et al. Preparation, microstructure and tribological properties of Ni3Al intermetallic compound coating by laser cladding[J]. Intermetallics, 2010, 18(5): 871-876. doi: 10.1016/j.intermet.2009.12.020
    [20] Jerred N D, Khanal R, Benson M T, et al. Nd, SbNd and Sb3Nd4 and their interactions with the cladding alloy HT9[J]. Journal of Nuclear Materials, 2020, 541: 152387. doi: 10.1016/j.jnucmat.2020.152387
    [21] Mirzadeh H. Quantification of the strengthening effect of rare earth elements during hot deformation of Mg-Gd-Y-Zr magnesium alloy[J]. Journal of Materials Research and Technology, 2016, 5(1): 1-4. doi: 10.1016/j.jmrt.2015.03.001
    [22] Pagounis E, Lindroos V K, Talvitie M. Influence of matrix structure on the abrasion wear resistance and toughness of a hot isostatic pressed white iron matrix composite[J]. Metallurgical and Materials Transactions A, 1996, 27(12): 4183-4191. doi: 10.1007/BF02595666
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  582
  • HTML全文浏览量:  248
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 修回日期:  2022-08-16
  • 录用日期:  2022-08-30
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回