留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同氮离子注入参数对聚四氟乙烯表面电荷积聚消散特性的影响

何友辉 陈洪斌 李飞 宋法伦

何友辉, 陈洪斌, 李飞, 等. 不同氮离子注入参数对聚四氟乙烯表面电荷积聚消散特性的影响[J]. 强激光与粒子束, 2022, 34: 125001. doi: 10.11884/HPLPB202234.220213
引用本文: 何友辉, 陈洪斌, 李飞, 等. 不同氮离子注入参数对聚四氟乙烯表面电荷积聚消散特性的影响[J]. 强激光与粒子束, 2022, 34: 125001. doi: 10.11884/HPLPB202234.220213
He Youhui, Chen Hongbin, Li Fei, et al. Effect of different nitrogen ion implantation parameters on surface charge accumulation and dissipation characteristics of polytetrafluoroethene[J]. High Power Laser and Particle Beams, 2022, 34: 125001. doi: 10.11884/HPLPB202234.220213
Citation: He Youhui, Chen Hongbin, Li Fei, et al. Effect of different nitrogen ion implantation parameters on surface charge accumulation and dissipation characteristics of polytetrafluoroethene[J]. High Power Laser and Particle Beams, 2022, 34: 125001. doi: 10.11884/HPLPB202234.220213

不同氮离子注入参数对聚四氟乙烯表面电荷积聚消散特性的影响

doi: 10.11884/HPLPB202234.220213
基金项目: 国家自然科学基金项目(51907182)
详细信息
    作者简介:

    何友辉,heyouhui20@gscaep.ac.cn

    通讯作者:

    宋法伦,songfalun@caep.cn

  • 中图分类号: TM214

Effect of different nitrogen ion implantation parameters on surface charge accumulation and dissipation characteristics of polytetrafluoroethene

  • 摘要: 为了有效抑制聚四氟乙烯(PTFE)材料表面电荷积聚、进一步提升其沿面耐压性能,采用射频产生氮等离子体对其表面进行等离子体浸没离子注入。注入过程中改变射频功率、脉宽、脉冲幅值等参数实现对PTFE样品表面的不同改性效果。通过测试其注入前后的X射线光电子能谱、表面形貌、表面电阻率、表面电位衰减特性、表面陷阱能级及其密度分布,较为系统地研究了不同注入参数对聚四氟乙烯样品表面成分、表面电荷积聚和消散特性的影响。结果表明:注入过程中,氮离子主要通过自身动能促使聚四氟乙烯材料表面分子结构发生破裂和重组来实现表面改性而并非通过化学反应引入新成分,注入氮离子的动能以及数量是决定表面改性效果的主要因素。随着射频源功率增加,射频源对氮气利用效率得到提升,其处理效果饱和点由100 W射频功率下的20 cm3/min升至400 W射频功率下的30 cm3/min,相应表面电阻率由100 W-10 cm3/min条件下的最大值$ 3.3\times {10}^{16}\;\mathrm{\Omega }/\mathrm{m}{\mathrm{m}}^{2} $降至400 W-30 cm3/min条件下的最小值$ 1\times {10}^{15}\;\mathrm{\Omega }/\mathrm{m}{\mathrm{m}}^{2} $,并且表面电荷消散速度由6%增加至68%,同时积聚量最多减少了18.6%。另外,随着外施脉冲电压由3 kV-25 μs升至7 kV-75 μs,表面电阻率最多下降了89%,表面电荷消散速度由4%增加至58%,积聚量最多减少了23.7%。进一步分析表明,经氮离子注入处理的聚四氟乙烯材料表面陷阱能级变浅,加速了表面电荷脱陷,而降低的表面电阻率也促进了脱陷的表面电荷沿面传导,最终使得表面电荷消散加快。
  • 图  1  不同处理条件下的PTFE表面XPS全谱

    Figure  1.  Full spectrum of XPS on PTFE surface under different treatment conditions

    图  2  不同脉冲电压与氮气流量处理下的PTFE表面XPS C谱

    Figure  2.  XPS C spectra of PTFE surface under different pulse voltage and nitrogen flow

    图  3  不同脉冲宽度处理和射频功率下的PTFE表面XPS C谱

    Figure  3.  XPS C spectra of PTFE surface treated with different RF source power and pulse voltage widths

    图  4  不同处理条件下的PTFE表面XPS N谱

    Figure  4.  XPS N spectra of PTFE surface under different treatment conditions

    图  5  不同氮气流量处理下的PTFE表面形貌

    Figure  5.  Surface morphology of PTFE under different nitrogen flow treatments

    图  6  不同处理条件对PTFE样品表面电阻率的影响

    Figure  6.  Effect of different treatment conditions on the surface resistivity of PTFE samples

    图  7  不同处理条件下的PTFE表面中心电位衰减特性

    Figure  7.  Attenuation characteristics of central potential on PTFE surface under different treatment conditions

    图  8  不同处理条件下的PTFE表面陷阱分布特性

    Figure  8.  Distribution characteristics of traps on PTFE surface under different treatment conditions

    图  1  二维光谱剪切STAMP系统结构图(a)及300 μJ激光激发玻璃产生等离子体动态摄影(b)

    表  1  实验样品的处理条件

    Table  1.   Treatment conditions of experimental samples

    No.voltage/kVpulse width/μspower/Wprocessed time/hnitrogen flow/(cm3·min−1)
    1~5350200110~40
    6~10550200110~40
    11~15750200110~40
    16~17325,75200120
    18~9525,75200120
    20725200120
    21~25550100110~30
    26~29550400110~40
    下载: 导出CSV

    表  2  离子注入处理前后PTFE样品表面C元素各状态所占比例

    Table  2.   Radicals and proportion of C elements in PTFE sample surface before and after ion implantation

    sample numberprocessing parametersproportion of C element/%
    CF3CF2CFC=OC−OCF3
    13 kV-50 μs, 10 cm3/min, 200 W, 1 h0.0044.021.298.627.4437.45
    23 kV-50 μs, 20 cm3/min, 200 W, 1 h1.3625.901.0511.6514.1742.38
    33 kV-50 μs, 40 cm3/min, 200 W, 1 h5.3161.341.502.513.4823.41
    45 kV-50 μs, 10 cm3/min, 200 W, 1 h0.8526.140.408.099.0053.73
    55 kV-50 μs, 20 cm3/min, 200 W, 1 h0.3343.080.449.728.2737.78
    65 kV-50 μs, 40 cm3/min, 200 W, 1 h1.3223.050.138.819.0662.07
    77 kV-50 μs, 40 cm3/min, 200 W, 1 h2.1967.943.442.797.4621.13
    87 kV-50 μs, 20 cm3/min, 200 W, 1 h1.6163.032.684.755.0121.69
    97 kV-50 μs, 10 cm3/min3, 100 W, 1 h2.1757.365.347.606.5525.69
    103 kV-25 μs, 20 cm3/min, 100 W, 1 h1.0341.131.8011.198.8137.74
    113 kV-50 μs, 20 cm3/min, 100 W, 1 h2.1059.951.949.268.6216.33
    125 kV-50 μs, 10 cm3/min, 100 W, 1 h1.0819.592.015.7610.7264.25
    135 kV-50 μs, 20 cm3/min3, 100 W, 1 h020.680.149.875.8661.92
    145 kV-50 μs, 40 cm3/min3, 100 W, 1 h0.0010.841.184.7810.1272.34
    155 kV-50 μs, 10 cm3/min3, 400 W, 1 h3.3466.433.015.654.989.53
    165 kV-50 μs, 20 cm3/min3, 400 W, 1 h3.6950.593.6710.8410.7017.97
    175 kV-50 μs, 40 cm3/min, 400 W, 1 h4.9761.312.327.933.9319.92
    下载: 导出CSV
  • [1] 谢苏江. 聚四氟乙烯的改性及应用[J]. 化工新型材料, 2002, 30(11):26-30 doi: 10.3969/j.issn.1006-3536.2002.11.007

    Xie Sujiang. Modifying of poly (tetrafluoroethylene) and its application[J]. New Chemical Materials, 2002, 30(11): 26-30 doi: 10.3969/j.issn.1006-3536.2002.11.007
    [2] 汪沨, 邱毓昌, 张乔根, 等. 表面电荷积聚对绝缘子沿面闪络影响的研究[J]. 中国电力, 2002, 35(9):52-55 doi: 10.3969/j.issn.1004-9649.2002.09.014

    Wang Feng, Qiu Yuchang, Zhang Qiaogen, et al. Study on influence of surface charge accumulation on flashover of insulator[J]. Electric Power, 2002, 35(9): 52-55 doi: 10.3969/j.issn.1004-9649.2002.09.014
    [3] Kumara S, Serdyuk Y V, Gubanski S M. Simulation of surface charge effect on impulse flashover characteristics of outdoor polymeric insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(6): 1754-1763. doi: 10.1109/TDEI.2010.5658226
    [4] Kato K, Kato H, Ishida T, et al. Influence of surface charges on impulse flashover characteristics of alumina dielectrics in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(6): 1710-1716. doi: 10.1109/TDEI.2009.5361594
    [5] Du B X, Xiao Meng. Influence of surface charge on DC flashover characteristics of epoxy/BN nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 529-536. doi: 10.1109/TDEI.2013.004137
    [6] Yan Ping, Shao Tao, Wang Jue, et al. Experimental investigation of surface flashover in vacuum using nanosecond pulses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(3): 634-642. doi: 10.1109/TDEI.2007.369524
    [7] Ma Guoming, Zhou Hongyang, Li Chengrong, et al. Designing epoxy insulators in SF6-filled DC-GIL with simulations of ionic conduction and surface charging[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3312-3320. doi: 10.1109/TDEI.2015.005031
    [8] Kindersberger J, Lederle C. Surface charge decay on insulators in air and sulfurhexafluorid—part I: simulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(4): 941-948. doi: 10.1109/TDEI.2008.4591214
    [9] Yamamoto O, Takuma T, Fukuda M, et al. Improving withstand voltage by roughening the surface of an insulating spacer used in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(4): 550-556. doi: 10.1109/TDEI.2003.1219636
    [10] 郎艳, 王艺博, 苏国强, 等. 表面粗糙度对有机玻璃材料真空沿面闪络特性的影响[J]. 高电压技术, 2015, 41(2):474-478 doi: 10.13336/j.1003-6520.hve.2015.02.017

    Lang Yan, Wang Yibo, Su Guoqiang, et al. Influence of surface roughness on vacuum flashover characteristics of PMMA[J]. High Voltage Engineering, 2015, 41(2): 474-478 doi: 10.13336/j.1003-6520.hve.2015.02.017
    [11] Guo Baohong, Sun Guangyu, Zhang Shu, et al. Mechanism of vacuum flashover on surface roughness[J]. Journal of Physics D: Applied Physics, 2019, 52: 215301. doi: 10.1088/1361-6463/ab05a0
    [12] 吕金壮. 氧化铝陶瓷的陷阱分布对其真空中沿面闪络特性的影响[D]. 北京: 华北电力大学(北京), 2003: 66-74

    Lv Jinzhuang. The influence of trap distribution of alumina ceramics on the surface flashover performance in vacuum[D]. Beijing: North China Electric Power University (Beijing), 2003: 66-74
    [13] Li Chengrong, Ding Lijian, Lv Jinzhuang, et al. The relation of trap distribution of alumina with surface flashover performance in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(1): 79-84. doi: 10.1109/TDEI.2006.1593404
    [14] Li Shengtao, Huang Qifeng, Sun Jian, et al. Effect of traps on surface flashover of XLPE in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 964-970. doi: 10.1109/TDEI.2010.5492273
    [15] Fukuda H, Yamano Y, Kobayashi S, et al. Relationship between vacuum surface flashover and charging characteristics for alumina ceramics of lowered resistivity[C]//Proceedings of the 2013 2nd International Conference on Electric Power Equipment-Switching Technology. 2013: 1-4.
    [16] 王邸博, 唐炬, 陶加贵, 等. 直流电压下闪络及电晕后聚合物表面电荷积聚特性[J]. 高电压技术, 2015, 41(11):3618-3627 doi: 10.13336/j.1003-6520.hve.2015.11.014

    Wang Dibo, Tang Ju, Tao Jiagui, et al. Surface charge accumulation characteristics on polymer after flashover and corona charging under DC voltage[J]. High Voltage Engineering, 2015, 41(11): 3618-3627 doi: 10.13336/j.1003-6520.hve.2015.11.014
    [17] 陈士修, 解广润. 温度对电晕特性的影响[J]. 高电压技术, 1994, 20(3):3-8 doi: 10.13336/j.1003-6520.hve.1994.03.002

    Chen Shixiu, Xie Guangrun. The effect of temperature on the corona performances[J]. High Voltage Engineering, 1994, 20(3): 3-8 doi: 10.13336/j.1003-6520.hve.1994.03.002
    [18] Lutz B, Kindersberger J. Influence of the relative humidity on the DC potential distribution of polymeric cylindrical model insulators[C]//Proceedings of the 2010 International Conference on Condition Monitoring and Diagnosis. 2010: 541-544.
    [19] Zhang Guanjun, Su Guoqiang, Song Baipeng, et al. Pulsed flashover across a solid dielectric in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6): 2321-2339. doi: 10.1109/TDEI.2018.007133
    [20] Guo Baohong, Wang Yibo, Su Guoqiang, et al. Influence of surface modification by direct fluorination on dielectric flashover characteristics in vacuum[C]//Proceedings of the 2017 1st International Conference on Electrical Materials and Power Equipment. 2017: 552-555.
    [21] Duan Li, Liu Wenyuan, Ke Changfeng, et al. Significantly improved surface flashover characteristics of insulators in vacuum by direct fluorination[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 456: 1-9.
    [22] 柯昌凤, 刘文元, 段荔, 等. 表面改性对绝缘子真空沿面闪络特性的影响[J]. 强激光与粒子束, 2014, 26:065010 doi: 10.11884/HPLPB201426.065010

    Ke Changfeng, Liu Wenyuan, Duan Li, et al. Influence of surface modification on vacuum flashover performance of insulators[J]. High Power Laser and Particle Beams, 2014, 26: 065010 doi: 10.11884/HPLPB201426.065010
    [23] Cross J D, Sudarshan T S. The effect of cuprous oxide coatings on surface flashover of dielectric spacers in vacuum[J]. IEEE Transactions on Electrical Insulation, 1974, EI-9(4): 146-150. doi: 10.1109/TEI.1974.299325
    [24] Chen Sile, Wang Shuai, Wang Yibo, et al. Surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum[J]. Applied Surface Science, 2017, 414: 107-113. doi: 10.1016/j.apsusc.2017.03.278
    [25] Zhang Cheng, Lin Haofan, Zhang Shuai, et al. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages[J]. Journal of Physics D: Applied Physics, 2017, 50: 405203. doi: 10.1088/1361-6463/aa829b
    [26] 何佳龙, 杨振, 李杰, 等. 离子束辐照影响氧化铝陶瓷真空沿面闪络性能的初步研究[C]//中国核科学技术进展报告(第五卷). 2017: 22-27

    He Jialong, Yang Zhen, Li Jie, et al. Preliminary investigation on the influence of ion beam irradiation on vacuum surface flashover characteristics of alumina ceramic[C]//Progress Report on China Nuclear Science & Technology (Vol. 5). 2017: 22-27
    [27] 汤宝寅, 王浪平. 等离子体浸泡式离子注入与沉积技术[M]. 北京: 国防工业出版社, 2012: 1-17

    Tang Baoyin, Wang Langping. Plasma immersion ion implantation and deposition technique[M]. Beijing: National Defense Industry Press, 2012: 1-17
    [28] Zhu Mingdong, Song Falun, Li Fei, et al. Surface insulating properties of titanium implanted alumina ceramics by plasma immersion ion implantation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 407: 155-159.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  864
  • HTML全文浏览量:  288
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-10-01
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回