留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于固态功放反射式宽带预失真器设计方法

孙光辉 张德伟 邓海林 吕大龙 周东方 卞晨阁

孙光辉, 张德伟, 邓海林, 等. 用于固态功放反射式宽带预失真器设计方法[J]. 强激光与粒子束, 2022, 34: 123002. doi: 10.11884/HPLPB202234.220219
引用本文: 孙光辉, 张德伟, 邓海林, 等. 用于固态功放反射式宽带预失真器设计方法[J]. 强激光与粒子束, 2022, 34: 123002. doi: 10.11884/HPLPB202234.220219
Sun Guanghui, Zhang Dewei, Deng Hailin, et al. Design method of reflective broadband predistorter for solid-state power amplifier[J]. High Power Laser and Particle Beams, 2022, 34: 123002. doi: 10.11884/HPLPB202234.220219
Citation: Sun Guanghui, Zhang Dewei, Deng Hailin, et al. Design method of reflective broadband predistorter for solid-state power amplifier[J]. High Power Laser and Particle Beams, 2022, 34: 123002. doi: 10.11884/HPLPB202234.220219

用于固态功放反射式宽带预失真器设计方法

doi: 10.11884/HPLPB202234.220219
基金项目: 国家自然科学基金项目 (61871405)
详细信息
    作者简介:

    孙光辉,2068857357@qq.com

    通讯作者:

    张德伟,commbox666@163.com

  • 中图分类号: TN830.6

Design method of reflective broadband predistorter for solid-state power amplifier

  • 摘要: 提出了一种特定增益和相位补偿的反射式宽带线性化器设计方法,并通过此方法设计了一种补偿固态功率放大器失真特性的预失真电路。利用肖特基二极管产生非线性补偿,根据电路拓扑结构,利用matlab优化工具找到单频点处特定增益补偿和相位补偿特性的并联负载值,改变频点,并重复上述步骤,可进一步得到特定增益和相位补偿所需的并联负载随频率的变化关系(即ZL~f曲线)。利用ADS仿真软件优化设计使二极管后端阻抗随频率的变化逼近ZL-f曲线。仿真的电路增益补偿和相位补偿分别为6 dB和−40°。最终实测频率范围为9.4~11.4 GHz,增益扩张在3.9~4.4 dB,相位补偿在−32.3°~−41.5°,频带特性良好,并且相对带宽达到了19.2%。通过改变二极管直流偏置电压,还实现了补偿曲线的斜率可调。
  • 图  1  预失真电路拓扑结构

    Figure  1.  Topology of predistortion circuit

    图  2  等增益和相位补偿曲线

    Figure  2.  Constant-gain and -phase compensation curves

    图  3  并联负载电路模型

    Figure  3.  Parallel load circuit model

    图  4  等固定增益和相位补偿下ZL-f曲线

    Figure  4.  ZL-f curve under constant gain and phase compensation

    图  5  不同频率下预失真器的仿真补偿曲线

    Figure  5.  Simulation compensation curve of the predistorter at different frequencies

    图  6  在10 GHz时不同偏置电压Vcc下预失真器仿真补偿曲线

    Figure  6.  Simulation compensation curve of predistorter under different Vcc biases at 10GHz

    图  7  线性化器实物图

    Figure  7.  Photograph of the linearizer

    图  8  预失真电路实际测试结果

    Figure  8.  Measured predistortion circuit results

  • [1] 郝鹏. 面向5G的功放线性化技术研究[D]. 成都: 电子科技大学, 2021: 1-10

    Hao Peng. Research on linearization technology of power amplifier for 5G applications[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 1-10
    [2] Hao Peng, He Songbai, You Fei, et al. Broadband linearizer based on equivalent power-dependent impedance function of diode and load match network[J]. Microwave and Optical Technology Letters, 2021, 63(2): 499-503. doi: 10.1002/mop.32644
    [3] Deng Hailin, Zhang Dewei, Lv Dalong, et al. A tunable reflective analog predistorter based on variable impedance matching network[J]. AEU-International Journal of Electronics and Communications, 2019, 98: 139-143.
    [4] Katz A. Linearization: reducing distortion in power amplifiers[J]. IEEE Microwave Magazine, 2001, 2(4): 37-49. doi: 10.1109/6668.969934
    [5] Li Jinbo, Shu Ran, Xu Zhiwei, et al. A 21-dm-OP1 dB 20.3%-efficiency−131.8-dBm/Hz-noise X-band Cartesian error feedback transmitter with fully integrated power amplifier in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 55(6): 1491-1501.
    [6] Borel A, Barzdėnas V, Vasjanov A. Linearization as a solution for power amplifier imperfections: a review of methods[J]. Electronics, 2021, 10: 1073. doi: 10.3390/electronics10091073
    [7] Brihuega A, Anttila L, Valkama M. Frequency-domain digital predistortion for OFDM[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 816-818. doi: 10.1109/LMWC.2021.3062982
    [8] Ginzberg N, Gidoni T, Schwartz Y, et al. Wideband linearization of a carrier aggregation transmitter using analog signal injection and 2-D digital predistortion[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2030-2040. doi: 10.1109/TMTT.2020.2988864
    [9] Katz A, Gray R, Dorval R. Linearizers for Q - and V -band TWTAs[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2371-2377. doi: 10.1109/TED.2018.2806199
    [10] Bian Chenge, Zhang Dewei, Deng Hailin, et al. A reconfigurable analog predistorter using tunable impendence matching network[J]. AEU-International Journal of Electronics and Communications, 2020, 125: 153384.
    [11] Liu Zheng, Yan Cheng, Liu Gang, et al. A novel analog linearizer for solid-state power amplifier in satellite communication system[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Chengdu: IEEE, 2018: 1-3.
    [12] 王崇, 杨志国. Ka频段氮化镓功放的预失真线性化器设计[J]. 计算机测量与控制, 2018, 26(1):252-255 doi: 10.16526/j.cnki.11-4762/tp.2018.01.062

    Wang Chong, Yang Zhiguo. Design of Pre-distortion linearizer for GaN power amplifier at Ka-band[J]. Computer Measurement & Control, 2018, 26(1): 252-255 doi: 10.16526/j.cnki.11-4762/tp.2018.01.062
    [13] Karimzadeh Baee R, Rahati Belabad A, Moazzen H, et al. A novel analog predistortion linearizer based on a Schottky diode for communication applications[J]. Journal of Electrical and Computer Engineering Innovations, 2022, 10(1): 101-106.
    [14] 邓海林, 陈会超, 周东方, 等. 一种补偿量可调的反射式预失真线性化器[J]. 真空科学与技术学报, 2018, 38(8):657-662 doi: 10.13922/j.cnki.cjovst.2018.08.03

    Deng Hailin, Chen Huichao, Zhou Dongfang, et al. Design and evaluation of modified reflective predistortion linearizer with tunable compensation[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 657-662 doi: 10.13922/j.cnki.cjovst.2018.08.03
    [15] Pozar D M. Microwave engineering[M]. Hoboken: Wiley, 2005.
  • 加载中
图(8)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  244
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-10
  • 修回日期:  2022-08-29
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回