留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

套管辅助法测量异型预制棒折射率分布

姜蕾 陈艺 代江云 刘念 吕嘉坤 张立华 李芳 贺红磊 高聪 沈昌乐

姜蕾, 陈艺, 代江云, 等. 套管辅助法测量异型预制棒折射率分布[J]. 强激光与粒子束, 2022, 34: 121006. doi: 10.11884/HPLPB202234.220233
引用本文: 姜蕾, 陈艺, 代江云, 等. 套管辅助法测量异型预制棒折射率分布[J]. 强激光与粒子束, 2022, 34: 121006. doi: 10.11884/HPLPB202234.220233
Jiang Lei, Chen Yi, Dai Jiangyun, et al. Measurement of refractive index profile of special-shaped preform by sleeve-assistant method[J]. High Power Laser and Particle Beams, 2022, 34: 121006. doi: 10.11884/HPLPB202234.220233
Citation: Jiang Lei, Chen Yi, Dai Jiangyun, et al. Measurement of refractive index profile of special-shaped preform by sleeve-assistant method[J]. High Power Laser and Particle Beams, 2022, 34: 121006. doi: 10.11884/HPLPB202234.220233

套管辅助法测量异型预制棒折射率分布

doi: 10.11884/HPLPB202234.220233
详细信息
    作者简介:

    姜 蕾,flrc2003@163.com

    通讯作者:

    沈昌乐,shenchangle@caep.cn

  • 中图分类号: O43

Measurement of refractive index profile of special-shaped preform by sleeve-assistant method

  • 摘要: 基于光束扫描法的光纤预制棒折射率测试仪主要适用于直径和长度在一定范围内的圆柱形样品折射率分布的测试。提出一种套管辅助法可实现更短长度、更细直径和变直径样品的折射率测试。该方法将待测样品居中放置于一个尺寸符合测试要求的圆柱形套管内,并在套管内注入折射率匹配油,使其没过待测样品后按常规步骤进行测试。对比实验结果表明,套管辅助法与直接测量法的偏差与仪器的测量误差相当。采用套管法,获得了预制棒拉丝终止后变径区不同位置折射率的径向分布,可为拉丝过程的研究提供参考。
  • 图  1  预制棒折射率测量原理图

    Figure  1.  Measuring principle of refractive-index profile of preform

    图  2  套管辅助法示意图

    Figure  2.  Diagrammatic sketch of sleeve-assistant method

    图  3  直接测量和套管辅助测量预制棒折射率分布及测量误差

    Figure  3.  Refractive index profiles of preform measured by refractometer directly and by sleeve-assistant method and measurement error

    图  4  套管辅助法测量预制棒颈缩锥区折射率分布和纤芯折射率分布

    Figure  4.  Refractive index profiles of the neck-down region of preform and fiber core measured by sleeve-assistant method

  • [1] Rein M, Favrod V D, Hou C, et al. Diode fibres for fabric-based optical communications[J]. Nature, 2018, 560(7717):214-218.
    [2] Li Xuejun, Mou Jun, Xiong Li, et al. Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption[J]. Optics & Laser Technology, 2021, 140:107074.
    [3] Huang Fengqin, Chen Tao, Si Jinhai, et al. Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing[J]. Optics Communications, 2019, 452:233-237.
    [4] Yu Junliang, Feng Guoying, Zhou Shouhuan. MZI fiber optic sensor based on single-ended temperature and refractive index detection[J]. High Power Laser and Particle Beams, 2019, 31:091005.
    [5] Nakazaki Y, Yamashita S. Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing[J]. Optics Express, 2009, 17(10):8310-8318.
    [6] Khalkhal E, Rezaei-Tavirani M, Zali M R, et al. The evaluation of laser application in surgery: a review article[J]. Journal of Lasers in Medical Sciences, 2019, 10(s1):S104-S111.
    [7] Borrego-Varillas R, Nenov A, Ganzer L, et al. Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules[J]. Chemical Science, 2019, 10(43):9907-9921.
    [8] Kawahito Y, Terajima T, Kimura H, et al. High-power fiber laser welding and its application to metallic glass Zr55Al10Ni5Cu30[J]. Materials Science and Engineering:B, 2008, 148(1/3):105-109.
    [9] Beecroft M. Digital interlooping: 3D printing of weft-knitted textile-based tubular structures using selective laser sintering of nylon powder[J]. International Journal of Fashion Design, Technology and Education, 2019, 12(2):218-224.
    [10] Kaushal H, Kaddoum G. Applications of lasers for tactical military operations[J]. IEEE Access, 2017, 5:20736-20753.
    [11] Hecht J. High-power fiber lasers[J]. Optics and Photonics News, 2018, 29(10):30-37.
    [12] Stewart W J. Technique for measuring the refractive index profiles of graded optical fibers[C]//Proceedings of Conf 100e. Tokyo, Japan, 1977: 395.
    [13] Hotate K, Koshi O. Measurement of refractive-index profile and transmission characteristics of a single-mode optical fiber from its exit-radiation pattern[J]. Applied Optics, 1979, 18(19):3265-3271.
    [14] Eickhoff W, Weidel E. Measuring method for the refractive index profile of optical glass fibres[J]. Optical and Quantum Electronics, 1975, 7(2):109-113.
    [15] Ikeda M, Tateda M, Yoshikiyo H. Refractive index profile of a graded index fiber: measurement by a reflection method[J]. Applied Optics, 1975, 14(4):814-815.
    [16] Li Min, Song Wuzhou, Zhan Wei, et al. Measurement of optical fiber refractive index distribution based on white light scanning interferometry[J]. Acta Photonica Sinica, 2021, 50:0406004.
    [17] Koike Y, Ishigure T, Nihei E. High-bandwidth graded-index polymer optical fiber[J]. Journal of Lightwave Technology, 1995, 13(7):1475-1489.
    [18] Huntington S T, Mulvaney P, Roberts A, et al. Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: a quantitative study[J]. Journal of Applied Physics, 1997, 82(6):2730-2734.
    [19] Marcuse D. Refractive index determination by the focusing method[J]. Applied Optics, 1979, 18(1):9-13.
    [20] Zhou Hongying, Chen Jiabi, Hu Qunhua, et al. Investigation of scan to measure the distributing of refraction ratio of section plane[J]. Infrared and Laser Engineering, 2007, 36(s1):159-161.
  • 加载中
图(4)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  182
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-23
  • 修回日期:  2022-11-12
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回