留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广角任意反射面速度干涉仪条纹内爆对称性分析

吴宇际 张青 王峰 理玉龙

吴宇际, 张青, 王峰, 等. 广角任意反射面速度干涉仪条纹内爆对称性分析[J]. 强激光与粒子束, 2022, 34: 122002. doi: 10.11884/HPLPB202234.220238
引用本文: 吴宇际, 张青, 王峰, 等. 广角任意反射面速度干涉仪条纹内爆对称性分析[J]. 强激光与粒子束, 2022, 34: 122002. doi: 10.11884/HPLPB202234.220238
Wu Yuji, Zhang Qing, Wang Feng, et al. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 122002. doi: 10.11884/HPLPB202234.220238
Citation: Wu Yuji, Zhang Qing, Wang Feng, et al. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 122002. doi: 10.11884/HPLPB202234.220238

广角任意反射面速度干涉仪条纹内爆对称性分析

doi: 10.11884/HPLPB202234.220238
基金项目: 国家自然科学基金项目(12005299);陕西省高校科协青年人才托举计划项目(20200507);火箭军工程大学青年基金项目(2020QNJJ001)
详细信息
    作者简介:

    吴宇际,yujiwu@mail.ustc.edu.cn

    通讯作者:

    王 峰,lfrc_wangfeng@163.com

  • 中图分类号: TN206

Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector

  • 摘要: 提出在条纹相机前加载异形光纤面板或环转线光纤传像束实现广角任意反射面速度干涉仪(VISAR)条纹采样的诊断设计,发现采样位置坐标处于靶面某圆上。综合运用坐标变换、傅里叶变换、勒让德展开等方法提取广角VISAR条纹相位实现内爆对称性分析,并通过示例验证了其可行性。针对诊断方法的特点、光路设计、装置研发、数据处理等展开讨论,指出广角VISAR诊断内爆对称性的发展方向。运用该方法记录并分析广角VISAR条纹数据,可使靶丸内爆对称性诊断准确、直观、形象,能为惯性约束聚变中激光等离子体不稳定性、流体不稳定性等研究提供支撑。
  • 图  1  广角VISAR内爆对称性诊断设计

    Figure  1.  Implosion symmetry diagnosis design based on wide-angle VISAR

    图  2  广角VISAR加载异形光纤面板时的诊断区域

    Figure  2.  Diagnosis area when wide-angle VISAR is loaded with shaped optical fiber panel

    图  3  光纤传像束环端半径不同时诊断的物面位置

    Figure  3.  Area where pellet is diagnosed when the radius of the ring end of ring-to-line fiber bundle is different

    图  4  广角VISAR装载光纤面板时内爆对称性诊断分析示意图

    Figure  4.  Schematic diagram of implosion symmetry analysis based on wide-angle VISAR data when shaped optical fiber panel is loaded

    图  5  广角VISAR装载光纤传像束时内爆对称性诊断分析示意图

    Figure  5.  Schematic diagram of implosion symmetry analysis based on wide-angle VISAR data when ring-to-line fiber bundle is loaded

  • [1] Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
    [2] Jacquemot S. Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies[J]. Nuclear Fusion, 2017, 57: 102024. doi: 10.1088/1741-4326/aa6d2d
    [3] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12: 435-448.
    [4] Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008
    [5] Kyrala G A, Dixit S, Glenzer S, et al. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated X-ray detectors (invited)[J]. Review of Scientific Instruments, 2010, 81: 10E316. doi: 10.1063/1.3481028
    [6] Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
    [7] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [8] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [9] Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
    [10] Meezan N B, Atherton L J, Callahan D A, et al. National Ignition Campaign hohlraum energetics[J]. Physics of Plasmas, 2010, 17: 056304. doi: 10.1063/1.3354110
    [11] Wu Yuji, Wang Feng, Wang Qiuping, et al. A high temporal resolution numerical algorithm for shock wave velocity diagnosis[J]. Scientific Reports, 2019, 9: 8597. doi: 10.1038/s41598-019-45112-3
    [12] Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments[J]. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
    [13] Smith R F, Eggert J H, Saculla M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in Bismuth[J]. Physical Review Letters, 2008, 101: 065701. doi: 10.1103/PhysRevLett.101.065701
    [14] Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
    [15] Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320-1322. doi: 10.1063/1.121882
    [16] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
    [17] Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056313. doi: 10.1063/1.4876609
    [18] 刘寿先, 彭其先, 雷江波, 等. 激光驱动飞片的线面成像VISAR测速技术[J]. 强激光与粒子束, 2014, 26:081008 doi: 10.11884/HPLPB201426.081008

    Liu Shouxian, Peng Qixian, Lei Jiangbo, et al. Line-imaging and framing plane-imaging velocity interferometer for laser driven flyer diagnostics[J]. High Power Laser and Particle Beams, 2014, 26: 081008 doi: 10.11884/HPLPB201426.081008
    [19] Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nuclear Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed
    [20] 吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31:032001 doi: 10.11884/HPLPB201931.190045

    Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001 doi: 10.11884/HPLPB201931.190045
    [21] Zylstra A B, Frenje J A, Séguin F H, et al. In-flight observations of low-mode ρR asymmetries in NIF implosions[J]. Physics of Plasmas, 2015, 22: 056301. doi: 10.1063/1.4918355
    [22] 吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019: 71-81

    Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019: 71-81
    [23] Erskine D J. Forward modeling of Doppler velocity interferometer system for improved shockwave measurements[J]. Review of Scientific Instruments, 2020, 91: 043103. doi: 10.1063/1.5143246
    [24] Nakai M, Yamanaka M, Azechi H, et al. X-ray and particle diagnostics of a high-density plasma by laser implosion (invited)[J]. Review of Scientific Instruments, 1990, 61(10): 3235-3240. doi: 10.1063/1.1141654
    [25] Séguin F H, Li C K, DeCiantis J L, et al. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield[J]. Physics of Plasmas, 2016, 23: 032705. doi: 10.1063/1.4943883
    [26] Bose A, Betti R, Mangino D, et al. Analysis of trends in experimental observables: reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 2018, 25: 062701. doi: 10.1063/1.5026780
    [27] Glenzer S H, MacGowan B J, Meezan N B, et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2011, 106: 085004. doi: 10.1103/PhysRevLett.106.085004
  • 加载中
图(5)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  209
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 修回日期:  2022-08-23
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回