留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于地球磁尾三维磁重联实验的脉冲电源

马勋 关键 李松杰 赵娟 肖金水 邓维军 丁明军 康传会 佟为明 李洪涛 鄂鹏

马勋, 关键, 李松杰, 等. 用于地球磁尾三维磁重联实验的脉冲电源[J]. 强激光与粒子束, 2022, 34: 125003. doi: 10.11884/HPLPB202234.220284
引用本文: 马勋, 关键, 李松杰, 等. 用于地球磁尾三维磁重联实验的脉冲电源[J]. 强激光与粒子束, 2022, 34: 125003. doi: 10.11884/HPLPB202234.220284
Ma Xun, Guan Jian, Li Songjie, et al. Pulsed power supply for three-dimensional magnetic reconnection experiment of earth’s magnetotail[J]. High Power Laser and Particle Beams, 2022, 34: 125003. doi: 10.11884/HPLPB202234.220284
Citation: Ma Xun, Guan Jian, Li Songjie, et al. Pulsed power supply for three-dimensional magnetic reconnection experiment of earth’s magnetotail[J]. High Power Laser and Particle Beams, 2022, 34: 125003. doi: 10.11884/HPLPB202234.220284

用于地球磁尾三维磁重联实验的脉冲电源

doi: 10.11884/HPLPB202234.220284
详细信息
    作者简介:

    马 勋,13778053819@163.com

    通讯作者:

    李洪涛,lht680526@21cn.com

    鄂 鹏,epeng@hit.edu.cn

  • 中图分类号: TM833; TL823

Pulsed power supply for three-dimensional magnetic reconnection experiment of earth’s magnetotail

  • 摘要: 空间环境地面模拟装置是哈尔滨工业大学承建的国家重大科技基础设施项目,其包含的空间等离子体环境模拟与研究系统是用于提供磁重联过程等基本物理过程的时空演化规律研究的平台。在研究地球磁尾三维磁重联时,使用处于真空环境内的偶极磁场线圈和两个磁镜场线圈来提供研究所需的模拟背景磁场,其中偶极场线圈为一个总电感为17.4 mH、总电阻为30.25 mΩ的单个线圈,而磁镜场线圈为两个线圈镜像对称设置并串联连接,总电感30.16 mH,总电阻58.81 mΩ。为了产生实验所需背景磁场的幅值和持续时间,研制并测试了两套总能量3.36 MJ的脉冲电源,在进行地球磁尾三维磁重联实验时两套电源需要同时工作。用于驱动偶极场线圈的脉冲电源按照实验需求可以在充电压不大于20 kV的情况下,能够提供超过9 kA的峰值电流,95%峰值电流的持续时间超过了5 ms,由峰值时刻降低到10%峰值时刻的时间不超过130 ms;用于驱动磁镜场线圈的脉冲电源按照实验需求可以在充电压不大于20 kV的情况下,能够提供超过8 kA峰的值电流,95%峰值电流的持续时间超过了5 ms,由峰值时刻降低到10%峰值时刻的时间不超过130 ms。
  • 图  1  带有续流支路的电容储能脉冲电源电路原理图

    Figure  1.  Schematic of capacitive pulsed power supply with crowbar branch

    图  2  脉冲电源电路原理图

    Figure  2.  Schematic circuit diagram of the pulsed power supply

    图  3  脉冲电源控制控制及数据采集系统功能图和远程控制系统界面

    Figure  3.  Function diagram of the control and data acquisition system and remote control system interface

    图  4  组装完成的放电模块和充电机

    Figure  4.  Pictures of the discharge module and the charger

    图  5  脉冲电源放电测试现场

    Figure  5.  Discharge test of the pulsed power supply

    图  6  偶极场线圈脉冲电源放电测试中输出电流波形

    Figure  6.  Output current of the pulsed power supply for the dipole coil in the discharge test and the simulation

    图  7  磁镜场线圈脉冲电源仿真计算中的输出流波形

    Figure  7.  Output current of the pulsed power supply for the magnetic mirror coil in the simulation

    表  1  两套电源电容值和续流电阻值的设计参数

    Table  1.   Designed capacitance and crowbar resistance value of two sets of pulsed power supplies

    pulsed power
    supply
    total
    capacitance/μF
    total crowbar
    resistance/mΩ
    number of
    modules
    capacitance of
    each module/μF
    crowbar resistance of
    each module/mΩ
    for dipole coil8400263516802630
    for magnetic mirror coils8400200516802630
    下载: 导出CSV

    表  2  保护电路电阻参数

    Table  2.   Resistor parameters of the protection circuit

    resistorresistance/kΩrated power/Wnumber
    Rcp
    Rrp
    Rd
    0.022
    2
    2
    20
    3000
    3000
    2
    6
    6
    Rb50001002
    下载: 导出CSV
  • [1] Stenzel R L, Gekelman W. Laboratory experiments on current sheet disruptions, double layers turbulence and reconnection[M]//Kundu M R, Holman G D. Unstable Current Systems and Plasma Instabilities in Astrophysics. Dordrecht: Springer, 1985.
    [2] Gekelman W, de Haas T, Daughton W, et al. Pulsating magnetic reconnection driven by three-dimensional flux-rope interactions[J]. Physical Review Letters, 2016, 116: 235101. doi: 10.1103/PhysRevLett.116.235101
    [3] Gekelman W, Lawrence E, Collette A, et al. Magnetic field line reconnection in the current systems of flux ropes and Alfvén waves[J]. Physica Scripta, 2010, 142: 014032.
    [4] Stenzel R L, Gekelman W. Magnetic field line reconnection experiments 1. Field topologies[J]. Journal of Geophysical Research, 1981, 86(A2): 649-658. doi: 10.1029/JA086iA02p00649
    [5] Mao Aohua, Ma Xun, E Peng, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF). Ⅰ. The overall design[J]. Review of Scientific Instruments, 2020, 91: 084702. doi: 10.1063/5.0011711
    [6] Mao Aohua, Ren Yang, Ji Hantao, et al. Conceptual design of the three-dimensional magnetic field configuration relevant to the magnetopause reconnection in the SPERF[J]. Plasma Science and Technology, 2017, 19: 034002. doi: 10.1088/2058-6272/19/3/034002
    [7] E Peng, Ling Wenbin, Mao Aohua, et al. Study on the magnetic forces of the dipole in the SPERF[J]. IEEE Transactions on Plasma Science, 2020, 48(1): 266-274. doi: 10.1109/TPS.2019.2957523
    [8] Saxena A K, Rawool A M, Kaushik T C. Crowbar scheme based on plasma motion for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 3058-3062. doi: 10.1109/TPS.2013.2279850
    [9] E Peng, Guan Jian, Ling Wenbin, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): modular design method and component selection[J]. Review of Scientific Instruments, 2021, 92: 034709. doi: 10.1063/5.0036923
    [10] 蒋成玺. 脉冲强磁场电源系统设计及实现[D]. 武汉: 华中科技大学, 2013

    Jiang Chengxi. Design and realization of pulse power supply system for pulsed high magnetic field[D]. Wuhan: Huazhong University of Science and Technology, 2013
    [11] E Peng, Guan Jian, Ma Xun, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the dipole coil[J]. Review of Scientific Instruments, 2021, 92: 044706. doi: 10.1063/5.0043730
    [12] Leone D, Carrubba V, Mazzaro S, et al. EPICS application for ITER RH supervisory control system[J]. Fusion Engineering and Design, 2021, 169: 11429.
    [13] Kim K H, Ju C J, Kim M K, et al. The KSTAR integrated control system based on EPICS[J]. Fusion Engineering and Design, 2006, 81(15/17): 1829-1833.
    [14] E Peng, Guan Jian, Jin Chenggang, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the magnetopause shape control coils[J]. Review of Scientific Instruments, 2021, 92: 064709. doi: 10.1063/5.0052725
    [15] 李松杰, 赵娟, 康传会, 等. 240 kJ模块化能库型脉冲放电电源研制[J]. 强激光与粒子束, 2022, 34:095015 doi: 10.11884/HPLPB202234.210564

    Li Songjie, Zhao Juan, Kang Chuanhui, et al. Development of a 240 kJ modularized pulsed power supply[J]. High Power Laser and Particle Beams, 2022, 34: 095015 doi: 10.11884/HPLPB202234.210564
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  521
  • HTML全文浏览量:  223
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2022-10-13
  • 网络出版日期:  2022-10-18
  • 刊出日期:  2022-11-02

目录

    /

    返回文章
    返回