留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性啁啾频率对势阱产生正负电子对的增强

王莉 李烈娟 麦丽开·麦提斯迪克 谢柏松

王莉, 李烈娟, 麦丽开·麦提斯迪克, 等. 非线性啁啾频率对势阱产生正负电子对的增强[J]. 强激光与粒子束, 2023, 35: 012003. doi: 10.11884/HPLPB202335.220066
引用本文: 王莉, 李烈娟, 麦丽开·麦提斯迪克, 等. 非线性啁啾频率对势阱产生正负电子对的增强[J]. 强激光与粒子束, 2023, 35: 012003. doi: 10.11884/HPLPB202335.220066
Wang Li, Li Liejuan, Melike Mohamedsedik, et al. Enhancement of nonlinear chirped frequency on electron-positron pair production in the potential well[J]. High Power Laser and Particle Beams, 2023, 35: 012003. doi: 10.11884/HPLPB202335.220066
Citation: Wang Li, Li Liejuan, Melike Mohamedsedik, et al. Enhancement of nonlinear chirped frequency on electron-positron pair production in the potential well[J]. High Power Laser and Particle Beams, 2023, 35: 012003. doi: 10.11884/HPLPB202335.220066

非线性啁啾频率对势阱产生正负电子对的增强

doi: 10.11884/HPLPB202335.220066
基金项目: 国家自然科学基金项目(11875007,11935008);北京市科学技术研究院改革与发展项目(13001-2114)
详细信息
    作者简介:

    王 莉,201731220001@mail.bnu.edu.cn

    通讯作者:

    谢柏松,bsxie@bnu.edu.cn

  • 中图分类号: O413

Enhancement of nonlinear chirped frequency on electron-positron pair production in the potential well

  • 摘要: 用计算量子场论方法研究了非线性啁啾频率对势阱中正负电子对产生的增强效应。研究了由静态势阱和动态势阱组成的组合势阱中产生的正负电子对的密度、产额和能谱等性质随着啁啾参数的变化,分析了组合势阱的频谱和瞬时束缚态。发现非线性啁啾效应对低频区域比较敏感,与固定频率情况相比可以使粒子数增加2~3倍。与组合势阱相比,非线性啁啾效应对单个振荡势阱更敏感。在低频下单个振荡的势阱中正负电子对产额可提高多个数量级。这是因为在低频下单个振荡的势阱中,主要通过量子隧穿过程产生的正负电子对数目非常低。非线性啁啾效应增加了高频场成分,提高了多光子过程和动力学辅助机制。由于高频抑制作用,所以非线性啁啾效应对高频区域粒子的增量不大,甚至会抑制正负电子对的产生。
  • 图  1  单个振荡势阱下正负电子对的数目与啁啾参数的依赖关系

    Figure  1.  Electron-positron number vs the chirp parameter in a single oscillating potential well

    图  2  单个振荡势阱下最优啁啾参数与基频的依赖关系

    Figure  2.  Optimal chirp parameter vs fundamental frequency in a single oscillating potential well

    图  3  单个振荡势阱下正负电子对数目随基频变化

    Figure  3.  Electron-positron pair number vs fundamental frequency in a single oscillating potential well

    图  4  单个振荡势阱下正负电子对数目与时间依赖关系

    Figure  4.  Electron-positron pair number vs time in a single oscillating potential well

    图  5  单个振荡势阱下瞬时束缚态与时间依赖关系

    Figure  5.  Instantaneous bound states vs time in a single oscillating potential well

    图  6  组合势阱下正负电子对的数目与啁啾参数的依赖关

    Figure  6.  Electron-positron number vs the chirp parameter in combined potential wells

    图  7  组合势阱下最优啁啾参数与基频的依赖关系

    Figure  7.  Optimal chirp parameter vs fundamental frequency in combined potential wells

    图  8  组合势阱下正负电子对的数目与基频的依赖关系

    Figure  8.  Electron-positron number vs fundamental frequency in combined potential wells

    图  9  组合势阱下正负电子对的数目随时间的演化

    Figure  9.  Electron-positron number varies with time in combined potential wells

    图  10  组合势阱下产生电子数目的时间空间分布

    Figure  10.  Temporal and spatial distribution of the number of electrons created under combined potential wells

    图  11  组合势阱下产生电子的能谱

    Figure  11.  Energy spectra of electrons created in combined potential wells

    图  12  非线性啁啾下的频谱

    Figure  12.  Frequency spectra under nonlinear chirp

    表  1  单个振荡势阱中最优啁啾参数下与固定频率下产生正负电子对数目的比值

    Table  1.   The ratio of electron-positron number created at the optimal chirp parameter to that at the fixed frequency in a single oscillating potential well

    ω0/c2Rω0/c2R
    0.1 13200 1.0 11.0
    0.2 698 1.2 3.74
    0.4 281 1.5 2.77
    0.5 82.9 1.8 2.80
    0.7 23.0 2.0 1.81
    下载: 导出CSV

    表  2  组合势阱中最优啁啾参数下与固定频率下产生正负电子对数目的比值

    Table  2.   The ratio of electron-positron number created at the optimal chirp parameter to that at the fixed frequency in combined potential wells

    ω0/c2Rω0/c2R
    0.06 1.42 1.0 1.99
    0.1 2.09 1.2 1.54
    0.3 2.22 1.5 1.12
    0.5 2.68 1.8 1.12
    0.7 2.15 2.0 1.00
    下载: 导出CSV
  • [1] Dirac P A M. The quantum theory of the electron. Part II[J]. Proc R Soc Lond A Math Phys Sci, 1928, 118(779): 351-361.
    [2] Anderson C D. The positive electron[J]. Phys Rev, 1933, 43(6): 491-494. doi: 10.1103/PhysRev.43.491
    [3] Sauter F. Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie Diracs[J]. Z Phys, 1931, 69(11/12): 742-764.
    [4] Heisenberg W, Euler H. Folgerungen aus der Diracschen theorie des positrons[J]. Z Phys, 1936, 98(11): 714-732.
    [5] Schwinger J. On gauge invariance and vacuum polarization[J]. Phys Rev, 1951, 82(5): 664-679. doi: 10.1103/PhysRev.82.664
    [6] Gies H, Klingmüller K. Pair production in inhomogeneous fields[J]. Phys Rev D, 2005, 72: 065001. doi: 10.1103/PhysRevD.72.065001
    [7] Dunne G, Wang Qinghai, Gies H, et al. Worldline instantons and the fluctuation prefactor[J]. Phys Rev D, 2006, 73: 065028. doi: 10.1103/PhysRevD.73.065028
    [8] Xie Baisong, Mohamedsedik M, Dulat S. Electron-positron pair production in an elliptic polarized time varying field[J]. Chin Phys Lett, 2012, 29: 021102. doi: 10.1088/0256-307X/29/2/021102
    [9] Schneider C, Schützhold R. Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields[J]. J High Energy Phys, 2016, 2016: 164.
    [10] Kluger Y, Eisenberg J M, Svetitsky B, et al. Pair production in a strong electric field[J]. Phys Rev Lett, 1991, 67(18): 2427-2430. doi: 10.1103/PhysRevLett.67.2427
    [11] Alkofer R, Hecht M B, Roberts C D, et al. Pair creation and an X-ray free electron laser[J]. Phys Rev Lett, 2001, 87: 193902. doi: 10.1103/PhysRevLett.87.193902
    [12] Abdukerim N, Li Z L, Xie B S. Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields[J]. Chin Phys B, 2017, 26: 020301. doi: 10.1088/1674-1056/26/2/020301
    [13] Krekora P, Cooley K, Su Q, et al. Creation dynamics of bound states in supercritical fields[J]. Phys Rev Lett, 2005, 95: 070403. doi: 10.1103/PhysRevLett.95.070403
    [14] Lv Q Z, Liu Y, Li Y J, et al. Noncompeting channel approach to pair creation in supercritical fields[J]. Phys Rev Lett, 2013, 111: 183204. doi: 10.1103/PhysRevLett.111.183204
    [15] Wang Li, Wu Binbing, Xie Baisong. Electron-positron pair production in an oscillating Sauter potential[J]. Phys Rev A, 2019, 100: 022127. doi: 10.1103/PhysRevA.100.022127
    [16] Hebenstreit F, Alkofer R, Gies H. Particle self-bunching in the Schwinger effect in spacetime-dependent electric fields[J]. Phys Rev Lett, 2011, 107: 180403. doi: 10.1103/PhysRevLett.107.180403
    [17] Kohlfürst C. Electron-positron pair production in inhomogeneous electromagnetic fields[D]. Graz: Universität Graz, 2015.
    [18] Xie Baisong, Li Ziliang, Tang Suo. Electron-positron pair production in ultrastrong laser fields[J]. Matter Radiat Extremes, 2017, 2(5): 225-242. doi: 10.1016/j.mre.2017.07.002
    [19] Kohlfürst C, Alkofer R. Ponderomotive effects in multiphoton pair production[J]. Phys Rev D, 2018, 97: 036026. doi: 10.1103/PhysRevD.97.036026
    [20] Ababekri M, Dulat S, Xie B S, et al. Chirp effects on pair production in oscillating electric fields with spatial inhomogeneity[J]. Phys Lett B, 2020, 810: 135815. doi: 10.1016/j.physletb.2020.135815
    [21] Kohlfürst C. Effect of time-dependent inhomogeneous magnetic fields on the particle momentum spectrum in electron-positron pair production[J]. Phys Rev D, 2020, 101: 096003. doi: 10.1103/PhysRevD.101.096003
    [22] Bialynicki-Birula I, Bialynicka-Birula Z. Time crystals made of electron-positron pairs[J]. Phys Rev A, 2021, 104: 022203. doi: 10.1103/PhysRevA.104.022203
    [23] Aleksandrov I A, Kohlfürst C. Pair production in temporally and spatially oscillating fields[J]. Phys Rev D, 2020, 101: 096009. doi: 10.1103/PhysRevD.101.096009
    [24] 任娜, 王加祥, 李安康, 等. 强激光场中真空极化效应[J]. 强激光与粒子束, 2011, 23(1):217-220 doi: 10.3788/HPLPB20112301.0217

    Ren Na, Wang Jiaxiang, Li Ankang, et al. Vacuum polarization effect in intense laser fields[J]. High Power Laser Part Beams, 2011, 23(1): 217-220 doi: 10.3788/HPLPB20112301.0217
    [25] Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate[J]. Opt Express, 2008, 16(3): 2109-2114. doi: 10.1364/OE.16.002109
    [26] ELI BEAMLINES[DB/OL].https://www.eli-beams.eu/.
    [27] Exawatt Center for Extreme Light Studies[DB/OL].https://xcels.iapras.ru/news.html.
    [28] Hubbell J H. Electron-positron pair production by photons: a historical overview[J]. Radiat Phys Chem, 2006, 75(6): 614-623. doi: 10.1016/j.radphyschem.2005.10.008
    [29] Brezin E, Itzykson C. Pair production in vacuum by an alternating field[J]. Phys Rev D, 1970, 2(7): 1191-1199. doi: 10.1103/PhysRevD.2.1191
    [30] Schützhold R, Gies H, Dunne G. Dynamically assisted Schwinger mechanism[J]. Phys Rev Lett, 2008, 101: 130404. doi: 10.1103/PhysRevLett.101.130404
    [31] Li Z L, Lu D, Xie B S, et al. Enhanced pair production in strong fields by multiple-slit interference effect with dynamically assisted Schwinger mechanism[J]. Phys Rev D, 2014, 89: 093011. doi: 10.1103/PhysRevD.89.093011
    [32] Nuriman A, Xie Baisong, Li Ziliang, et al. Enhanced electron-positron pair creation by dynamically assisted combinational fields[J]. Phys Lett B, 2012, 717(4/5): 465-469.
    [33] Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Phys Rev Lett, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
    [34] 李昂, 余金清, 陈玉清, 等. 光子对撞机产生正负电子对的数值方法[J]. 物理学报, 2020, 69:019501 doi: 10.7498/aps.69.20190729

    Li Ang, Yu Jinqing, Chen Yuqing, et al. Numerical method of electron-positron pairs generation in photon-photon collider[J]. Acta Phys Sin, 2020, 69: 019501 doi: 10.7498/aps.69.20190729
    [35] Abdukerim N, Li Ziliang, Xie Baisong. Effects of laser pulse shape and carrier envelope phase on pair production[J]. Phys Lett B, 2013, 726(4/5): 820-826.
    [36] 吴广智, 王强, 周沧涛, 等. 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象[J]. 物理学报, 2017, 66:070301 doi: 10.7498/aps.66.070301

    Wu Guangzhi, Wang Qiang, Zhou Cangtao, et al. Positron wave interference and Klein tunnel during the production of pairs in the double-well potential[J]. Acta Phys Sin, 2017, 66: 070301 doi: 10.7498/aps.66.070301
    [37] Gong C, Li Z L Li Y J. Enhanced pair creation by an oscillating potential with multiple well-barrier structures in space[J]. Phys Rev A, 2018, 98: 043424. doi: 10.1103/PhysRevA.98.043424
    [38] Sawut A, Dulat S, Xie B S. Pair production in asymmetric Sauter potential well[J]. Phys Scr, 2021, 96: 055305. doi: 10.1088/1402-4896/abe9f1
    [39] Su D D, Li Y T, Lv Q Z, et al. Enhancement of pair creation due to locality in bound-continuum interactions[J]. Phys Rev D, 2020, 101: 054501.
    [40] Jiang M, Lv Q Z, Sheng Z M, et al. Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states[J]. Phys Rev A, 2013, 87: 042503. doi: 10.1103/PhysRevA.87.042503
    [41] Tang Suo, Xie Baisong, Lu Ding, et al. Electron-positron pair creation and correlation between momentum and energy level in a symmetric potential well[J]. Phys Rev A, 2013, 88: 012106. doi: 10.1103/PhysRevA.88.012106
    [42] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt Commun, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [43] 林宏奂, 隋展, 王建军, 等. 啁啾脉冲堆积用于光脉冲整形[J]. 光学学报, 2007, 27(3):466-470 doi: 10.3321/j.issn:0253-2239.2007.03.017

    Lin Honghuan, Sui Zhan, Wang Jianjun, et al. Optical pulse shaping by chirped pulse stacking[J]. Acta Opt Sin, 2007, 27(3): 466-470 doi: 10.3321/j.issn:0253-2239.2007.03.017
    [44] 王友文, 陈列尊, 章礼富, 等. 啁啾脉冲堆积宽带激光非线性传输时域调制特性[J]. 强激光与粒子束, 2010, 22(8):1823-1828 doi: 10.3788/HPLPB20102208.1823

    Wang Youwen, Chen Liezun, Zhang Lifu, et al. Characteristics of temporal modulation in nonlinear propagation of broad-band lasers stacked by chirped pulses[J]. High Power Laser Part Beams, 2010, 22(8): 1823-1828 doi: 10.3788/HPLPB20102208.1823
    [45] 黄小东, 张小民, 李桂秋, 等. 啁啾脉冲堆积及其放大特性[J]. 强激光与粒子束, 2009, 21(1):71-75

    Huang Xiaodong, Zhang Xiaomin, Li Guiqiu, et al. Characteristic and amplification of stacked chirped pulse[J]. High Power Laser Part Beams, 2009, 21(1): 71-75
    [46] 胡素兴, 徐志展, 韩申生, 等. 一维势场中电子对强激光场的非线性散射[J]. 强激光与粒子束, 1996, 8(4):535-540

    Hu Suxing, Xu Zhizhan, Han Shenshen, et al. Nonlinear scatter of intense laser pulse by the electron bound in one-dimensional potential[J]. High Power Laser Part Beams, 1996, 8(4): 535-540
    [47] Olugh O, Li Z L, Xie B S, et al. Pair production in differently polarized electric fields with frequency chirps[J]. Phys Rev D, 2019, 99: 036003. doi: 10.1103/PhysRevD.99.036003
    [48] Gong C, Li Z L, Xie B S, et al. Electron-positron pair production in frequency modulated laser fields[J]. Phys Rev D, 2020, 101: 016008. doi: 10.1103/PhysRevD.101.016008
    [49] Li L J, Mohamedsedik M, Xie B S. Enhanced dynamically assisted pair production in spatial inhomogeneous electric fields with the frequency chirping[J]. Phys Rev D, 2021, 104: 036015. doi: 10.1103/PhysRevD.104.036015
    [50] Mohamedsedik M, Li L J, Xie B S. Schwinger pair production in inhomogeneous electric fields with symmetrical frequency chirp[J]. Phys Rev D, 2021, 104: 016009. doi: 10.1103/PhysRevD.104.016009
    [51] Dumlu C K. Schwinger vacuum pair production in chirped laser pulses[J]. Phys Rev D, 2010, 82: 045007. doi: 10.1103/PhysRevD.82.045007
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  255
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2022-06-13
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回