留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伴随强光子辐射的自旋极化等离子体研究进展

弓正

弓正. 伴随强光子辐射的自旋极化等离子体研究进展[J]. 强激光与粒子束, 2023, 35: 012010. doi: 10.11884/HPLPB202335.220114
引用本文: 弓正. 伴随强光子辐射的自旋极化等离子体研究进展[J]. 强激光与粒子束, 2023, 35: 012010. doi: 10.11884/HPLPB202335.220114
Gong Zheng. Research progress on radiative spin polarized plasma[J]. High Power Laser and Particle Beams, 2023, 35: 012010. doi: 10.11884/HPLPB202335.220114
Citation: Gong Zheng. Research progress on radiative spin polarized plasma[J]. High Power Laser and Particle Beams, 2023, 35: 012010. doi: 10.11884/HPLPB202335.220114

伴随强光子辐射的自旋极化等离子体研究进展

doi: 10.11884/HPLPB202335.220114
基金项目: 德国马克斯普朗克学会博士后奖学金项目
详细信息
    作者简介:

    弓 正,gong@mpi-hd.mpg.de

  • 中图分类号: O434.12

Research progress on radiative spin polarized plasma

  • 摘要: 强光子辐射导致的自旋极化等离子体是强激光与物质相互作用领域兴起的新研究方向。基于等离子体的自旋极化粒子束在固态材料诊断、原子核结构探测、弱电相互作用分析等方面具有广泛应用。同时,自旋作为电子的固有属性,它可为描述等离子体的行为状态提供新的信息自由度,因此自旋极化信号在强场等离子体自诊断也具有潜在应用。概述了在超强相对论等离子体中,由伽马光子辐射伴随的自旋翻转产生的自旋极化等离子体的物理机制,并对其在超高能量密度等离子体瞬态动力学反演的可能进行了介绍。
  • 图  1  自旋依赖辐射函数$ F\left({\chi }_{\mathrm{e}},{\chi }_{\mathrm{p}\mathrm{h}}\right) $的理论和模拟对比[58]

    Figure  1.  Comparison between the analytical and numerical spin-dependent radiation function $ F\left({\chi }_{\mathrm{e}},{\chi }_{\mathrm{p}\mathrm{h}}\right) $[58]

    图  2  强激光与近临界等离子体相互作用产生极化电子束的方案图[58]

    Figure  2.  Schematic of the generation of spin-polarized electrons in the near-critical density plasma irradiated by a high-intensity laser pulse[58]

    图  3  极化等离子体电子的时空演化过程[58]

    Figure  3.  Spatial and temporal evolution of spin-polarized plasma electrons[58]

    图  4  基于全光学非线性康普顿散射产生线偏振伽马光子的方案[65]

    Figure  4.  Scenario for the generation of linearly-polarized γ-rays via nonlinear Compton scattering[65]

    图  5  基于线偏振超强激光与填充近临界密度等离子体的锥形靶体相互作用的方案[65]

    Figure  5.  Scenario for the generation of LP γ-rays by an ultrastrong LP laser pulse interacting with a conical Au target filled with an NCD hydrogen plasma[65]

    图  6  (a)圆偏振强激光脉冲与近临界密度靶相互作用产生具有螺旋性角分布的线偏振伽马光子辐射;(b)伽马光子线偏振方向沿着准角方向;(c)经历加速的电子,其辐射的伽马光子线偏振的角分布具有正螺旋性;(d)经历减速的电子,其辐射的伽马光子线偏振的角分布具有正螺旋性;(c)、(d)为理论预言;(e)、(f)是相应的PIC模拟结果,分别与(c)、(d)对应[69]

    Figure  6.  (a) The schematic for generation of linearly polarized gamma-photons with angular spiral tendency from a near-critical density plasma irradiated by a circularly polarized ultrastrong laser pulse. (b) The linear polarization (LP) orientation is along the azimuthal direction. (c) For an accelerating electron, there is a counter-clockwise spiral tendency in the angular distribution of gamma-photon LP orientation. (d) For a decelerating electron, there is a clockwise spiral tendency in the angular distribution of gamma-photon LP orientation. (c) and (d) are for the analytically predicted results, while (e) and (f) are for the corresponding simulation results[69]

    图  7  PIC模拟结果[70]

    Figure  7.  PIC simulation results[70]

    图  8  利用激光与固体靶相互作用来产生极化正电子束的方案[71]

    Figure  8.  Schematic for generating polarized positrons in laser-solid interactions [71]

  • [1] Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [2] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78(2): 309-371. doi: 10.1103/RevModPhys.78.309
    [3] Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 2006, 78(2): 591-640. doi: 10.1103/RevModPhys.78.591
    [4] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [5] Bulanov S V, Esirkepov T Z, Kando M, et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers[J]. Plasma Physics Reports, 2015, 41(1): 1-51. doi: 10.1134/S1063780X15010018
    [6] Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
    [7] Shen Baifei, Bu Zhigang, Xu Jiancai, et al. Exploring vacuum birefringence based on a 100 PW laser and an X-ray free electron laser beam[J]. Plasma Physics and Controlled Fusion, 2018, 60: 044002. doi: 10.1088/1361-6587/aaa7fb
    [8] Zhu Xinglong, Yu Tongpu, Sheng Zhengming, et al. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686. doi: 10.1038/ncomms13686
    [9] Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 2015, 92: 053107. doi: 10.1103/PhysRevE.92.053107
    [10] Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 2018, 8: 8400. doi: 10.1038/s41598-018-26785-8
    [11] Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4: 014401. doi: 10.1063/1.5083914
    [12] Chen Min, Pukhov A, Yu Tongpu, et al. Radiation reaction effects on ion acceleration in laser foil interaction[J]. Plasma Physics and Controlled Fusion, 2011, 53: 014004. doi: 10.1088/0741-3335/53/1/014004
    [13] Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
    [14] Gong Zheng, Hu Ronghao, Shou Yinren, et al. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams[J]. Matter and Radiation at Extremes, 2016, 1(6): 308-315. doi: 10.1016/j.mre.2016.10.005
    [15] Qiao Bin, Chang Hengxin, Xie Y, et al. Gamma-ray generation from laser-driven electron resonant acceleration: In the non-QED and the QED regimes[J]. Physics of Plasmas, 2017, 24: 123101. doi: 10.1063/1.5013019
    [16] Gu Yanjun, Klimo O, Bulanov S V, et al. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses[J]. Communications Physics, 2018, 1: 93. doi: 10.1038/s42005-018-0095-3
    [17] Gu Yanjun, Jirka M, Klimo O, et al. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: a comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4: 064403. doi: 10.1063/1.5098978
    [18] Baier V N, Katkov V M. Radiational polarization of electrons in inhomogeneous magnetic field[J]. Physics Letters A, 1967, 24(6): 327-329. doi: 10.1016/0375-9601(67)90608-1
    [19] Baĭer V N. Radiative polarization of electrons in storage rings[J]. Soviet Physics Uspekhi, 1972, 14(6): 695-714. doi: 10.1070/PU1972v014n06ABEH004751
    [20] Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
    [21] Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [22] Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
    [23] Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 2016, 23: 033109. doi: 10.1063/1.4943280
    [24] Chen Hui, Wilks S C, Bonlie J D, et al. Making relativistic positrons using ultraintense short pulse lasers[J]. Physics of Plasmas, 2009, 16: 122702. doi: 10.1063/1.3271355
    [25] Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
    [26] Derbenev Y S, Kondratenko A M. Polarization kinetics of particles in storage rings[J]. Soviet Physics JETP, 1973, 37(6): 968-973.
    [27] Del Sorbo D, Seipt D, Blackburn T G, et al. Spin polarization of electrons by ultraintense lasers[J]. Physical Review A, 2017, 96: 043407. doi: 10.1103/PhysRevA.96.043407
    [28] Seipt D, Del Sorbo D, Ridgers C P, et al. Theory of radiative electron polarization in strong laser fields[J]. Physical Review A, 2018, 98: 023417. doi: 10.1103/PhysRevA.98.023417
    [29] Del Sorbo D, Seipt D, Thomas A G R, et al. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers[J]. Plasma Physics and Controlled Fusion, 2018, 60: 064003. doi: 10.1088/1361-6587/aab979
    [30] Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122: 154801. doi: 10.1103/PhysRevLett.122.154801
    [31] Li Yanfei, Guo Rentong, Shaisultanov R, et al. Electron polarimetry with nonlinear Compton scattering[J]. Physical Review Applied, 2019, 12: 014047. doi: 10.1103/PhysRevApplied.12.014047
    [32] Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 2020, 800: 135120. doi: 10.1016/j.physletb.2019.135120
    [33] Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
    [34] Song Huaihang, Wang Weimin, Li Jianxing, et al. Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse[J]. Physical Review A, 2019, 100: 033407. doi: 10.1103/PhysRevA.100.033407
    [35] Seipt D, Del Sorbo D, Ridgers C P, et al. Ultrafast polarization of an electron beam in an intense bichromatic laser field[J]. Physical Review A, 2019, 100: 061402(R). doi: 10.1103/PhysRevA.100.061402
    [36] Geng Xuesong, Ji Liangliang, Shen B F, et al. Spin-dependent radiative deflection in the quantum radiation-reaction regime[J]. New Journal of Physics, 2020, 22: 013007. doi: 10.1088/1367-2630/ab623b
    [37] Wen Meng, Tamburini M, Keitel C H. Polarized laser-wakefield-accelerated kiloampere electron beams[J]. Physical Review Letters, 2019, 122: 214801. doi: 10.1103/PhysRevLett.122.214801
    [38] Wu Yitong, Ji Liangliang, Geng Xuesong, et al. Polarized electron-beam acceleration driven by vortex laser pulses[J]. New Journal of Physics, 2019, 21: 073052. doi: 10.1088/1367-2630/ab2fd7
    [39] Wu Yitong, Ji Liangliang, Geng Xuesong, et al. Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection[J]. Physical Review E, 2019, 100: 043202. doi: 10.1103/PhysRevE.100.043202
    [40] Wu Yitong, Ji Liangliang, Geng Xuesong, et al. Spin filter for polarized electron acceleration in plasma wakefields[J]. Physical Review Applied, 2020, 13: 044064. doi: 10.1103/PhysRevApplied.13.044064
    [41] Hützen A, Thomas J, Böker J, et al. Polarized proton beams from laser-induced plasmas[J]. High Power Laser Science and Engineering, 2019, 7: e16. doi: 10.1017/hpl.2018.73
    [42] Jin Luling, Wen Meng, Zhang Xiaomei, et al. Spin-polarized proton beam generation from gas-jet targets by intense laser pulses[J]. Physical Review E, 2020, 102: 011201(R). doi: 10.1103/PhysRevE.102.011201
    [43] Gong Zheng, Shou Yinren, Tang Yuhui, et al. Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma[J]. Physical Review E, 2020, 102: 053212. doi: 10.1103/PhysRevE.102.053212
    [44] Li X F, Gibbon P, Hützen A, et al. Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas[J]. Physical Review E, 2021, 104: 015216. doi: 10.1103/PhysRevE.104.015216
    [45] Reichwein L, Büscher M, Pukhov A. Acceleration of spin-polarized proton beams via two parallel laser pulses[DB/OL]. arXiv preprint arXiv: 2201.11534, 2022.
    [46] Büscher M, Hützen A, Ji Liangliang, et al. Generation of polarized particle beams at relativistic laser intensities[J]. High Power Laser Science and Engineering, 2020, 8: e36. doi: 10.1017/hpl.2020.35
    [47] Thomas B A L H. I. The kinematics of an electron with an axis[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927, 3(13): 1-22. doi: 10.1080/14786440108564170
    [48] Bargmann V, Michel L, Telegdi V L. Precession of the polarization of particles moving in a homogeneous electromagnetic field[M]//Noz M E, Kim Y S. Special Relativity and Quantum Theory. Dordrecht: Springer, 1988: 443-446.
    [49] Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 2011, 14: 054401. doi: 10.1103/PhysRevSTAB.14.054401
    [50] Ridgers C P, Kirk J G, Duclous R, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions[J]. Journal of Computational Physics, 2014, 260: 273-285. doi: 10.1016/j.jcp.2013.12.007
    [51] Gonoskov A, Bastrakov S, Efimenko E, et al. Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments[J]. Physical Review E, 2015, 92: 023305. doi: 10.1103/PhysRevE.92.023305
    [52] Gong Zheng, Hu Ronghao, Yu Jinqing, et al. Radiation rebound and quantum splash in electron-laser collisions[J]. Physical Review Accelerators and Beams, 2019, 22: 093401. doi: 10.1103/PhysRevAccelBeams.22.093401
    [53] Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
    [54] Chen Yueyue, Hatsagortsyan K Z, Keitel C H, et al. Electron spin- and photon polarization-resolved probabilities of strong-field QED processes[J]. Physical Review D, 2022, 105: 116013. doi: 10.1103/PhysRevD.105.116013
    [55] Xue Kun, Guo Rentong, Wan Feng, et al. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process[J]. Fundamental Research, 2022, 2(4): 539-545. doi: 10.1016/j.fmre.2021.11.022
    [56] Tang Yuhui, Gong Zheng, Yu Jinqing, et al. Radiative polarization dynamics of relativistic electrons in an intense electromagnetic field[J]. Physical Review A, 2021, 103: 042807. doi: 10.1103/PhysRevA.103.042807
    [57] Li Yanfei, Chen Yueyue, Hatsagortsyan K Z, et al. Helicity transfer in strong laser fields via the electron anomalous magnetic moment[J]. Physical Review Letters, 2022, 128: 174801. doi: 10.1103/PhysRevLett.128.174801
    [58] Gong Zheng, Hatsagortsyan K Z, Keitel C H. Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization[J]. Physical Review Letters, 2021, 127: 165002. doi: 10.1103/PhysRevLett.127.165002
    [59] Li Yanfei, Shaisultanov R, Chen Yueyue, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
    [60] Pukhov A, Meyer-Ter-Vehn J. Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation[J]. Physical Review Letters, 1996, 76(21): 3975-3978. doi: 10.1103/PhysRevLett.76.3975
    [61] Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
    [62] Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 2016, 116: 185003. doi: 10.1103/PhysRevLett.116.185003
    [63] Gong Zheng, Mackenroth F, Wang Tao, et al. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields[J]. Physical Review E, 2020, 102: 013206. doi: 10.1103/PhysRevE.102.013206
    [64] Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 2021, 23: 023031. doi: 10.1088/1367-2630/abdf9a
    [65] Xue Kun, Dou Zhenke, Wan Feng, et al. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction[J]. Matter and Radiation at Extremes, 2020, 5: 054402. doi: 10.1063/5.0007734
    [66] Wan Feng, Wang Yu, Guo Rentong, et al. High-energy γ-photon polarization in nonlinear Breit-Wheeler pair production and γ polarimetry[J]. Physical Review Research, 2020, 2: 032049(R). doi: 10.1103/PhysRevResearch.2.032049
    [67] 孙婷, 王宇, 郭任彤, 等. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展[J]. 物理学报, 2021, 70:087901 doi: 10.7498/aps.70.20210009

    Sun Ting, Wang Yu, Guo Rentong, et al. Review on laser-driven high-energy polarized electron and positron beams and γ-rays[J]. Acta Physica Sinica, 2021, 70: 087901 doi: 10.7498/aps.70.20210009
    [68] Dai Yanan, Shen Baifei, Li Jianxing, et al. Photon polarization effects in polarized electron–positron pair production in a strong laser field[J]. Matter and Radiation at Extremes, 2022, 7: 014401. doi: 10.1063/5.0063633
    [69] Gong Zheng, Hatsagortsyan K Z, Keitel C H. Deciphering in situ electron dynamics of ultrarelativistic plasma via polarization pattern of emitted γ-photons[J]. Physical Review Research, 2022, 4: L022024. doi: 10.1103/PhysRevResearch.4.L022024
    [70] Song Huaihang, Wang Weimin, Li Yanfei, et al. Spin and polarization effects on the nonlinear Breit–Wheeler pair production in laser-plasma interaction[J]. New Journal of Physics, 2021, 23: 075005. doi: 10.1088/1367-2630/ac0dec
    [71] Song Huaihang, Wang Weimin, Li Yutong. Dense polarized positrons from laser-irradiated foil targets in the QED regime[J]. Physical Review Letters, 2022, 129: 035001. doi: 10.1103/PhysRevLett.129.035001
    [72] Liu Weiyuan, Xue Kun, Wan Feng, et al. Trapping and acceleration of spin-polarized positrons from γ photon splitting in wakefields[J]. Physical Review Research, 2022, 4: L022028. doi: 10.1103/PhysRevResearch.4.L022028
    [73] Nie Zan, Li Fei, Morales F, et al. In situ generation of high-energy spin-polarized electrons in a beam-driven plasma wakefield accelerator[J]. Physical Review Letters, 2021, 126: 054801. doi: 10.1103/PhysRevLett.126.054801
    [74] Nie Zan, Li Fei, Morales F, et al. Highly spin-polarized multi-GeV electron beams generated by single-species plasma photocathodes[J]. Physical Review Research, 2022, 4: 033015. doi: 10.1103/PhysRevResearch.4.033015
    [75] Han Qianqian, Geng Xuesong, Shen Baifei, et al. Ultra-fast polarization of a thin electron layer in the rotational standing-wave field driven by double ultra-intense laser pulses[J]. New Journal of Physics, 2022, 24: 063013. doi: 10.1088/1367-2630/ac740f
    [76] Accardi A, Albacete J L, Anselmino M, et al. Electron-ion collider: the next QCD frontier[J]. The European Physical Journal A, 2016, 52: 268. doi: 10.1140/epja/i2016-16268-9
    [77] An Xiangyan, Chen Min, Li Jianxing, et al. Mapping electromagnetic fields structure in plasma using a spin polarized electron beam[J]. Physics of Plasmas, 2019, 26: 123106. doi: 10.1063/1.5118710
  • 加载中
图(8)
计量
  • 文章访问数:  786
  • HTML全文浏览量:  287
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-08-10
  • 网络出版日期:  2022-08-18
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回