留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能电子穿越绝缘体微孔膜动力学过程研究

周鹏 万城亮 袁华 程紫东 李鹏飞 张浩文 崔莹 张红强 陈熙萌

周鹏, 万城亮, 袁华, 等. 低能电子穿越绝缘体微孔膜动力学过程研究[J]. 强激光与粒子束, 2023, 35: 026001. doi: 10.11884/HPLPB202335.220120
引用本文: 周鹏, 万城亮, 袁华, 等. 低能电子穿越绝缘体微孔膜动力学过程研究[J]. 强激光与粒子束, 2023, 35: 026001. doi: 10.11884/HPLPB202335.220120
Zhou Peng, Wan Chengliang, Yuan Hua, et al. Dynamic process of low energy electrons through insulating nanocapillaries[J]. High Power Laser and Particle Beams, 2023, 35: 026001. doi: 10.11884/HPLPB202335.220120
Citation: Zhou Peng, Wan Chengliang, Yuan Hua, et al. Dynamic process of low energy electrons through insulating nanocapillaries[J]. High Power Laser and Particle Beams, 2023, 35: 026001. doi: 10.11884/HPLPB202335.220120

低能电子穿越绝缘体微孔膜动力学过程研究

doi: 10.11884/HPLPB202335.220120
基金项目: 国家自然科学基金项目(U1732269)
详细信息
    作者简介:

    周 鹏,zhoupeng@hignt.com

    通讯作者:

    崔 莹,cuying@lzu.edu.cn

  • 中图分类号: O462

Dynamic process of low energy electrons through insulating nanocapillaries

  • 摘要: 采用二维位置灵敏的微通道板探测器对能量为1500 eV的低能电子束穿过孔径为400 nm、未经照射过的的聚对苯二甲酸乙二醇酯(PET)微孔膜后的全角分布以及时间演化进行了测量,同时采用自制的积分式能谱测量装置测量了穿透电子的能量分布。实验结果表明:在充电阶段,当入射电子束束流较弱时,透射电子强度随充电时间逐渐上升;充电过程中,透射电子的角分布宽度由小变大,但是角分布中心基本不随膜的倾角移动。对出射电子达到平衡态时的电子能谱的测量表明,穿透电子的能量保持着入射时的能量。对于理解电子在绝缘体微孔中的传输给出了新的实验证据,给出了可能形成“导向效应”的微孔内部电场的条件。
  • 图  1  实验平台的基本装置示意图

    Figure  1.  Device diagram of experimental platform

    图  2  积分式的能量测量系统结构示意图

    Figure  2.  Structure diagram of integral energy measurement system

    图  3  透射电子强度随倾角变化

    Figure  3.  Transmitted electron intensity varies with inclination angle α

    图  4  不同倾角下出射电子平衡态下二维角分布图

    Figure  4.  2D angular distribution of outgoing electrons in equilibrium at different inclination angles

    图  5  完全放电状态下的微孔膜倾角为1°时透射电子穿透率及二维角分布随时间演化

    Figure  5.  Transmission electron transmittance (f) and evolution of 2D angular distribution with time

    图  6  透射电子能量积分谱

    Figure  6.  Transmission electron energy integral spectrum

    图  7  在CASINO中使用的PET样本的三维(3D)模型及PET膜内部沉积模拟

    Figure  7.  The 3D model of PET sample used in CASINO and simulation of internal deposition of PET

    图  8  PET膜内部沉积电子出射路径图

    Figure  8.  Electron emission path diagram of internal deposition of PET

  • [1] Lemell C, Burgdörfer J, Aumayr F. Interaction of charged particles with insulating capillary targets—The guiding effect[J]. Progress in Surface Science, 2013, 88(3): 237-278. doi: 10.1016/j.progsurf.2013.06.001
    [2] Stolterfoht N, Yamazaki Y. Guiding of charged particles through capillaries in insulating materials[J]. Physics Reports, 2016, 629: 1-107. doi: 10.1016/j.physrep.2016.02.008
    [3] Martin C R. Nanomaterials: a membrane-based synthetic approach[J]. Science, 1994, 266(5193): 1961-1966. doi: 10.1126/science.266.5193.1961
    [4] Stolterfoht N, Hellhammer R, Bundesmann J, et al. Scaling laws for guiding of highly charged ions through nanocapillaries in an insulating polymer[J]. Physical Review A, 2008, 77: 032905. doi: 10.1103/PhysRevA.77.032905
    [5] Stolterfoht N, Hellhammer R, Bundesmann J, et al. Density effects on the guided transmission of 3 keV Ne7+ ions through PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(2): 226-230. doi: 10.1016/j.nimb.2008.10.046
    [6] Vokhmyanina K A, Kubankin A S, Myshelovka L V, et al. Transport of accelerated electrons through dielectric nanochannels in PET films[J]. Journal of Instrumentation, 2020, 15: C04003. doi: 10.1088/1748-0221/15/04/C04003
    [7] Sahana M B, Skog P, Víkor G, et al. Guiding of highly charged ions by highly ordered SiO2 nanocapillaries[J]. Physical Review A, 2006, 73: 040901(R). doi: 10.1103/PhysRevA.73.040901
    [8] Zhang H Q, Skog P, Schuch R. Dynamics of guiding highly charged ions through SiO2 nanocapillaries[J]. Physical Review A, 2010, 82: 052901. doi: 10.1103/PhysRevA.82.052901
    [9] Stolterfoht N, Hellhammer R, Juhász Z, et al. Guided transmission of Ne7+ ions through nanocapillaries in insulating polymers: scaling laws for projectile energies up to 50 keV[J]. Physical Review A, 2009, 79: 042902. doi: 10.1103/PhysRevA.79.042902
    [10] 哈帅, 张文铭, 谢一鸣, 等. 低能Cl在Al2O3绝缘微孔膜中的输运过程[J]. 物理学报, 2020, 69:094101 doi: 10.7498/aps.69.20190933

    Ha Shuai, Zhang Wenming, Xie Yiming, et al. Transmission of low-energy Cl ions through Al2O3 insulating nanocapillaries[J]. Acta Physica Sinica, 2020, 69: 094101 doi: 10.7498/aps.69.20190933
    [11] Skog P, Soroka I L, Johansson A, et al. Guiding of highly charged ions through Al2O3 nano-capillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 258(1): 145-149.
    [12] Zhang Qi, Liu Zhonglin, Li Pengfei, et al. Transmission of low-energy negative ions through insulating nanocapillaries[J]. Physical Review A, 2018, 97: 042704. doi: 10.1103/PhysRevA.97.042704
    [13] Das S, Dassanayake B S, Winkworth M, et al. Inelastic guiding of electrons in polymer nanocapillaries[J]. Physical Review A, 2007, 76: 042716. doi: 10.1103/PhysRevA.76.042716
    [14] 李鹏飞, 袁华, 程紫东, 等. 低能电子在玻璃管中的稳定传输[J]. 物理学报, 2022, 71:074101 doi: 10.7498/aps.71.20212036

    Li Pengfei, Yuan Hua, Cheng Zidong, et al. Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding[J]. Acta Physica Sinica, 2022, 71: 074101 doi: 10.7498/aps.71.20212036
    [15] 李鹏飞, 袁华, 程紫东, 等. 低能电子穿越玻璃直管时倾角依赖的输运动力学[J]. 物理学报, 2022, 71:084104 doi: 10.7498/aps.71.20212335

    Li Pengfei, Yuan Hua, Cheng Zidong, et al. Dynamics of low energy electrons transmitting through straight glass capillary: tilt angle dependence[J]. Acta Physica Sinica, 2022, 71: 084104 doi: 10.7498/aps.71.20212335
    [16] Milosavljević A R, Víkor G, Pešić Z D, et al. Guiding of low-energy electrons by highly ordered Al2O3 nanocapillaries[J]. Physical Review A, 2007, 75: 030901(R). doi: 10.1103/PhysRevA.75.030901
    [17] Dassanayake B S, Das S, Bereczky R J, et al. Energy dependence of electron transmission through a single glass macrocapillary[J]. Physical Review A, 2010, 81: 020701(R). doi: 10.1103/PhysRevA.81.020701
    [18] Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, et al. Electron transmission through a microsize tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(11): 1248-1252. doi: 10.1016/j.nimb.2010.11.089
    [19] Zhang Hongqiang, Akram N, Soroka I L, et al. Transmission of highly charged ions through mica nanocapillaries of rhombic cross section[J]. Physical Review A, 2012, 86: 022901(R). doi: 10.1103/PhysRevA.86.022901
    [20] Zhang H Q, Akram N, Skog P, et al. Tailoring of keV-ion beams by image charge when transmitting through rhombic and rectangular shaped nanocapillaries[J]. Physical Review Letters, 2012, 108: 193202. doi: 10.1103/PhysRevLett.108.193202
    [21] Zhang Hongqiang, Akram N, Schuch R. Guiding and scattering of ions in transmission through mica nanocapillaries[J]. Physical Review A, 2016, 94: 032704. doi: 10.1103/PhysRevA.94.032704
    [22] Schiessl K, Tőkési K, Solleder B, et al. Electron guiding through insulating nanocapillaries[J]. Physical Review Letters, 2009, 102: 163201. doi: 10.1103/PhysRevLett.102.163201
    [23] Dassanayake B S, Keerthisinghe D, Wickramarachchi S, et al. Temporal evolution of electron transmission through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 298: 1-4.
    [24] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Charge deposition dependence and energy loss of electrons transmitted through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 105-108.
    [25] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Elastic and inelastic transmission of electrons through insulating polyethylene terephthalate nanocapillaries[J]. Physical Review A, 2015, 92: 012703. doi: 10.1103/PhysRevA.92.012703
    [26] Dassanayake B S, Bereczky R J, Das S, et al. Time evolution of electron transmission through a single glass macrocapillary: charge build-up, sudden discharge, and recovery[J]. Physical Review A, 2011, 83: 012707. doi: 10.1103/PhysRevA.83.012707
    [27] Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Electron-beam transmission through a micrometer-sized tapered-glass capillary: dependence on incident energy and angular tilt angle[J]. Physical Review A, 2016, 94: 022701. doi: 10.1103/PhysRevA.94.022701
    [28] Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Incident energy and charge deposition dependences of electron transmission through a microsized tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 382: 60-66.
    [29] Hovington P, Drouin D, Gauvin R, et al. CASINO: a new Monte Carlo code in C language for electron beam interactions—part III: stopping power at low energies[J]. Scanning, 1997, 19(1): 29-35. doi: 10.1002/sca.4950190104
    [30] Drouin D, Couture A R, Joly D, et al. CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users[J]. Scanning, 2007, 29(3): 92-101. doi: 10.1002/sca.20000
    [31] Demers H, Poirrier-Demers N, Couture A R, et al. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software[J]. Scanning, 2011, 33(3): 135-146. doi: 10.1002/sca.20262
    [32] Joy D C, Luo S. An empirical stopping power relationship for low-energy electrons[J]. Scanning, 1989, 11(4): 176-180. doi: 10.1002/sca.4950110404
    [33] Lowney J R. Monte Carlo simulation of scanning electron microscope signals for lithographic metrology[J]. Scanning, 1996, 18(4): 301-306.
  • 加载中
图(8)
计量
  • 文章访问数:  746
  • HTML全文浏览量:  339
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 修回日期:  2022-09-29
  • 网络出版日期:  2022-09-30
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回