留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kirkpatrick-Baez显微镜的芯部自发光成像诊断不确定度评估

蒋炜 董云松 张兴 尹传盛 孙传奎 董建军 尚万里

蒋炜, 董云松, 张兴, 等. 基于Kirkpatrick-Baez显微镜的芯部自发光成像诊断不确定度评估[J]. 强激光与粒子束, 2023, 35: 032002. doi: 10.11884/HPLPB202335.220139
引用本文: 蒋炜, 董云松, 张兴, 等. 基于Kirkpatrick-Baez显微镜的芯部自发光成像诊断不确定度评估[J]. 强激光与粒子束, 2023, 35: 032002. doi: 10.11884/HPLPB202335.220139
Jiang Wei, Dong Yunsong, Zhang Xing, et al. Uncertainty evaluate of core symmetry which observed by Kirkpatrick-Baez microscope[J]. High Power Laser and Particle Beams, 2023, 35: 032002. doi: 10.11884/HPLPB202335.220139
Citation: Jiang Wei, Dong Yunsong, Zhang Xing, et al. Uncertainty evaluate of core symmetry which observed by Kirkpatrick-Baez microscope[J]. High Power Laser and Particle Beams, 2023, 35: 032002. doi: 10.11884/HPLPB202335.220139

基于Kirkpatrick-Baez显微镜的芯部自发光成像诊断不确定度评估

doi: 10.11884/HPLPB202335.220139
基金项目: 国家自然科学基金项目(12075219),中物院创新基金项目(CX20210019)
详细信息
    作者简介:

    蒋 炜,jwk8840@mail.ustc.edu.cn

  • 中图分类号: O532+.13

Uncertainty evaluate of core symmetry which observed by Kirkpatrick-Baez microscope

  • 摘要: 具备高分辨能力(约5 μm)的Kirkpatrick-Baez(KB)显微镜大幅提升了芯部自发光诊断图像的空间分辨率,准确评估诊断不确定度有利于开展内爆对称性调谐,提高内爆性能。建立了针对KB显微镜的在线不确定度评估方法,详细分析了其在线背光照相实验中的图像分辨率和噪声,并对内爆物理实验中的芯部自发光数据进行了不确定度评估。结果显示,芯部自发光P2不确定度为6%,P4不对称性的不确定度为8%,满足了现阶段内爆物理实验的诊断需求。
  • 图  1  四通道KB显微镜背光成像结果及横向和纵向截面曲线

    Figure  1.  Backlight image got by KB microscope and x-axis and y-axis cross section of the image

    图  2  模拟计算中采用的网格函数及分别得到的峰谷比与系统分辨率之间的关系

    Figure  2.  Grid images used in simulation and relation between resolution and k

    图  3  KB显微镜分辨率二维分布

    Figure  3.  Two-dimensional distribution of KB microscope resolution

    图  4  KB显微镜离线考核结果及分辨率

    Figure  4.  Offline assement results and resolution of KB

    图  5  IP板信噪比统计及数据拟合

    Figure  5.  SNR of image plate and fitted curve

  • [1] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [2] Murphy T J, Wallace J M, Delamater N D, et al. Hohlraum symmetry experiments with multiple beam cones on the Omega laser facility[J]. Phys Rev Lett, 1998, 81(1): 108-111. doi: 10.1103/PhysRevLett.81.108
    [3] Kyrala G A, Kline J L, Dixit S, et al. Symmetry tuning for ignition capsules via the symcap technique[J]. Phys Plasmas, 2011, 18: 056307. doi: 10.1063/1.3574504
    [4] Pollaine S M, Bradley D K, Landen O L, et al. National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography[J]. Phys Plasmas, 2001, 8(5): 2357-2364. doi: 10.1063/1.1364514
    [5] Kirkwood R K, Milovich J, Bradley D K, et al. Sensitivity of ignition scale backlit thin-shell implosions to hohlraum symmetry in the foot of the drive pulse[J]. Phys Plasmas, 2009, 16: 012702. doi: 10.1063/1.3041160
    [6] Dewald E L, Milovich J, Thomas C, et al. Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments[J]. Phys Plasmas, 2011, 18: 092703. doi: 10.1063/1.3624497
    [7] 陈伯伦, 蒋炜, 景龙飞, 等. 再发射技术测量SGII黑腔靶早期对称性[J]. 强激光与粒子束, 2013, 25(2):385-388 doi: 10.3788/HPLPB20132502.0385

    Chen Bolun, Jiang Wei, Jing Longfei, et al. Re-emission technique for early time, hohlraum radiation symmetry measurements on SGⅡ facility[J]. High Power Laser and Particle Beams, 2013, 25(2): 385-388 doi: 10.3788/HPLPB20132502.0385
    [8] Dong Yunsong, Kang Dongguo, Jiang Wei, et al. Study of the asymmetry of hot-spot self-emission imaging of inertial confinement fusion implosion driven by high-power laser facilities[J]. Plasma Sci Technol, 2020, 22: 084003. doi: 10.1088/2058-6272/ab9804
    [9] Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Phys Plasmas, 2014, 21: 056313. doi: 10.1063/1.4876609
    [10] Pickworth L A, McCarville T, Decker T, et al. A kirkpatrick-baez microscope for the National Ignition Facility[J]. Rev Sci Instrum, 2014, 85: 11D611. doi: 10.1063/1.4886433
    [11] 穆宝忠, 吴雯靓, 伊圣振, 等. 4.75 keV能点四通道Kirkpatrick-Baez显微镜[J]. 强激光与粒子束, 2013, 25(4):903-907 doi: 10.3788/HPLPB20132504.0903

    Mu Baozhong, Wu Wenliang, Yi Shengzhen, et al. 4.75 keV four-channel Kirkpatrick-Baez microscope[J]. High Power Laser and Particle Beams, 2013, 25(4): 903-907 doi: 10.3788/HPLPB20132504.0903
    [12] Meadowcroft A L, Bentley C D, Stott E N. Evaluation of the sensitivity and fading characteristics of an image plate system for X-ray diagnostics[J]. Rev Sci Instrum, 2008, 79: 113102. doi: 10.1063/1.3013123
    [13] Pawley C J, Deniz A V. Improved measurements of noise and resolution of X-ray framing cameras at 1-2 keV[J]. Rev Sci Instrum, 2000, 71(3): 1286-1295. doi: 10.1063/1.1150497
    [14] Callahan D A, Meezan N B, Glenzer S H, et al. The velocity campaign for ignition on NIF[J]. Phys Plasmas, 2012, 19: 056305. doi: 10.1063/1.3694840
  • 加载中
图(5)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  193
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-11-14
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-11-22
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回