留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道电路系统长钢轨电容补偿电磁脉冲耦合效应

杨轶轩 高志伟 吴腾 叶志红

杨轶轩, 高志伟, 吴腾, 等. 轨道电路系统长钢轨电容补偿电磁脉冲耦合效应[J]. 强激光与粒子束, 2023, 35: 023003. doi: 10.11884/HPLPB202335.220148
引用本文: 杨轶轩, 高志伟, 吴腾, 等. 轨道电路系统长钢轨电容补偿电磁脉冲耦合效应[J]. 强激光与粒子束, 2023, 35: 023003. doi: 10.11884/HPLPB202335.220148
Yang Yixuan, Gao Zhiwei, Wu Teng, et al. Coupling effect of electromagnetic pulse to long rails with compensation capacitance of track circuit system[J]. High Power Laser and Particle Beams, 2023, 35: 023003. doi: 10.11884/HPLPB202335.220148
Citation: Yang Yixuan, Gao Zhiwei, Wu Teng, et al. Coupling effect of electromagnetic pulse to long rails with compensation capacitance of track circuit system[J]. High Power Laser and Particle Beams, 2023, 35: 023003. doi: 10.11884/HPLPB202335.220148

轨道电路系统长钢轨电容补偿电磁脉冲耦合效应

doi: 10.11884/HPLPB202335.220148
详细信息
    作者简介:

    杨轶轩,yangyixuan@crscd.com.cn

    通讯作者:

    高志伟,gao_zhiwei@163.com

  • 中图分类号: TN03

Coupling effect of electromagnetic pulse to long rails with compensation capacitance of track circuit system

  • 摘要: 结合时域有限差分(FDTD)方法、传输线方程和长钢轨激励场快速计算方法,研究了一种高效的时域混合算法,实现长钢轨电容补偿电磁脉冲耦合效应的时域快速计算。首先,为避免对钢轨不规则结构的直接建模,根据趋肤效应,将钢轨等效为管状导体模型并提取对应的单位长度分布参数。然后,根据长钢轨激励场快速计算方法,快速计算长钢轨沿线电场分布,并结合传输线方程构建钢轨等效圆柱模型与补偿电容一体化的电磁耦合模型。最后,使用FDTD方法求解传输线方程,获取钢轨沿线各点的电磁脉冲耦合响应。研究结果表明,钢轨耦合电流波形不断展宽,但是峰值随长度增加到一定值后达到饱和状态,此结论可为轨道电路系统电磁防护设计提供重要的数据支撑。
  • 图  1  辐照钢轨圆柱模型

    Figure  1.  Cylindrical model of irradiated rail

    图  2  P60钢轨和各半径对应圆柱模型在HEMP E1辐照下的电流响应

    Figure  2.  Current responses of P60 rail and cylinder models corresponding to each radius under HEMP E1 irradiation

    图  3  不同长度的钢轨和圆柱模型在HEMP E1辐照下的电流响应

    Figure  3.  Current responses of rail and cylinder models with different lengths under HEMP E1 irradiation

    图  4  双导线沿线电场和负载端垂直电场分布

    Figure  4.  Electric field distribution along the line and the vertical electric field at the load end of the double conductor

    图  5  长传输线激励场快速计算方法处理示意图

    Figure  5.  Schematic diagram of processing method for fast calculation of excitation field of long transmission line

    图  6  补偿电容对钢轨电容分布参数的影响

    Figure  6.  Influence of compensation capacitance on the distribution parameters of rail capacitance

    图  7  电磁脉冲作用钢轨等效圆柱模型

    Figure  7.  Equivalent cylindrical model of rail under electromagnetic pulse

    图  8  钢轨电磁耦合时域算法与CST的终端负载电流响应

    Figure  8.  Terminal load current response of rail electromagnetic coupling time domain (FDTD-TL) algorithm and CST calculation

    图  9  不同钢轨长度下的终端负载电流响应

    Figure  9.  Termination load current response under different rail lengths

    表  1  钢轨电磁耦合时域算法和CST计算所需内存和时间的对比

    Table  1.   Comparison of memory and time required for rail electromagnetic coupling time-domain algorithm and CST calculation

    numerical methodsmemory/MBtime/s
    rail electromagnetic
    coupling time
    domain algorithm
    5016
    CST200924
    下载: 导出CSV

    表  2  不同长度情况下的钢轨电磁耦合时域算法所需内存和时间

    Table  2.   Memory and time required by the time-domain algorithm for electromagnetic coupling of rails with different lengths

    length/mmemory/MBtime/min
    10621
    100718
    10008758
    1000097320
    下载: 导出CSV
  • [1] Hill R J, Brillante S, Leonard P J. Railway track transmission line parameters from finite element field modelling: Shunt admittance[J]. IEE Proceedings-Electric Power Applications, 2000, 147(3): 227-238. doi: 10.1049/ip-epa:20000373
    [2] Dolara A, Leva S. Calculation of rail internal impedance by using finite elements methods and complex magnetic permeability[J]. International Journal of Vehicular Technology, 2009, 2009: 505246.
    [3] 支永健. 弓网电弧电磁干扰传播的若干理论研究[D]. 杭州: 浙江大学, 2013

    Zhi Yongjian. Some theoretical studies on pantograph-catenary arc electromagnetic interference propagation[D]. Hangzhou: Zhejiang University, 2013
    [4] 朱冰. 轨道电路一次参数的建模与仿真[D]. 北京: 北京交通大学, 2014

    Zhu Bing. The modeling and simulation of the primary parameter of track circuit[D]. Beijing: Beijing Jiaotong University, 2014
    [5] 王梓丞, 郭进, 罗蓉, 等. 轨道电路的EMTP建模及其雷电过电压的研究[J]. 电瓷避雷器, 2016(4):152-158 doi: 10.16188/j.isa.1003-8337.2016.04.031

    Wang Zicheng, Guo Jin, Luo Rong, et al. Study on EMTP modeling and lightning overvoltage of track circuit[J]. Insulators and Surge Arresters, 2016(4): 152-158 doi: 10.16188/j.isa.1003-8337.2016.04.031
    [6] 王东. 无砟轨道轨道电路一次参数建模与仿真分析[D]. 兰州: 兰州交通大学, 2020

    Wang Dong. Primary parameter modeling and simulation analysis of track circuit with ballastless track[D]. Lanzhou: Lanzhou Jiaotong University, 2020
    [7] 吴命利. 牵引供电系统电气参数与数学模型研究[D]. 北京: 北京交通大学, 2006

    Wu Mingli. Research on electrical parameters and mathematical model of traction power supply system[D]. Beijing: Beijing Jiaotong University, 2006
    [8] Woodruff L F. Principles of electric power transmission[M]. 2nd ed. New York: John Wiley & Sons, Inc. , 1938.
    [9] Dwight H B. Skin effect in tubular and flat conductors[J]. Transactions of the American Institute of Electrical Engineers, 1918, 37(2): 1379-1403.
    [10] 彭涛. 牵引供电系统中钢轨频变参数特性研究[D]. 南昌: 华东交通大学, 2017

    Peng Tao. The research of frequency-dependent impedance in rail of traction power system[D]. Nanchang: East China Jiaotong University, 2017
    [11] 谢彦召, 王赞基, 王群书. 地面附近架高线缆HEMP响应计算的Agrawal和Taylor模型比较[J]. 强激光与粒子束, 2005, 17(4):575-580

    Xie Yanzhao, Wang Zanji, Wang Qunshu. Comparison of Agrawal and Taylor models for response calculations of aboveground cable excited by HEMP[J]. High Power Laser and Particle Beams, 2005, 17(4): 575-580
    [12] Ye Zhihong, Wu Xiaolin, Li Yaoyao. Coupling analysis of transmission lines excited by space electromagnetic fields based on a time domain hybrid method using parallel technique[J]. Chinese Physics B, 2020, 29: 090701. doi: 10.1088/1674-1056/ab96a6
    [13] 刘备, 刘强, 阚勇, 等. 基于传输线等效法的双腔体屏蔽系数快速算法[J]. 强激光与粒子束, 2015, 27:053203 doi: 10.11884/HPLPB201527.053203

    Liu Bei, Liu Qiang, Kan Yong, et al. Fast prediction algorithm for shielding effectiveness of double enclosures based on transmission line equavilent circuit method[J]. High Power Laser and Particle Beams, 2015, 27: 053203 doi: 10.11884/HPLPB201527.053203
    [14] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 3版. 西安: 西安电子科技大学出版社, 2011

    Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves[M]. 3rd ed. Xi'an: Xidian University Press, 2011
    [15] Ye Zhihong, Liao Cheng, Wen Chuan. Time-domain coupling analysis of shielded cable on the ground excited by plane wave[J]. Progress in Electromagnetics Research M, 2018, 67: 45-53. doi: 10.2528/PIERM18021101
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  487
  • HTML全文浏览量:  228
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-09-07
  • 录用日期:  2022-09-26
  • 网络出版日期:  2022-09-28
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回