留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

幅度调制器对宽带低相干光时频特性的影响

王桔 饶大幸 贺瑞敬 高妍琦 崔勇 赵晓晖 史海涛 隋展 黄昌清

王桔, 饶大幸, 贺瑞敬, 等. 幅度调制器对宽带低相干光时频特性的影响[J]. 强激光与粒子束, 2023, 35: 052001. doi: 10.11884/HPLPB202335.220153
引用本文: 王桔, 饶大幸, 贺瑞敬, 等. 幅度调制器对宽带低相干光时频特性的影响[J]. 强激光与粒子束, 2023, 35: 052001. doi: 10.11884/HPLPB202335.220153
Wang Ju, Rao Daxing, He Ruijing, et al. Influence of amplitude modulator on time-frequency characteristics of broadband low coherence light[J]. High Power Laser and Particle Beams, 2023, 35: 052001. doi: 10.11884/HPLPB202335.220153
Citation: Wang Ju, Rao Daxing, He Ruijing, et al. Influence of amplitude modulator on time-frequency characteristics of broadband low coherence light[J]. High Power Laser and Particle Beams, 2023, 35: 052001. doi: 10.11884/HPLPB202335.220153

幅度调制器对宽带低相干光时频特性的影响

doi: 10.11884/HPLPB202335.220153
详细信息
    作者简介:

    王 桔,1719017882@qq.com

    通讯作者:

    饶大幸,rdx5202008@163.com

  • 中图分类号: O436.1

Influence of amplitude modulator on time-frequency characteristics of broadband low coherence light

  • 摘要: 通过改变马赫-曾德干涉型幅度调制器的射频系数和偏置电压,调制光脉冲的强度。研究了幅度调制器对宽带低相干光时频特性影响的规律,分析调制后的光脉冲时域波形分布、光谱和复相干度模值曲线,结果表明,射频系数对光脉冲的光谱成分和时间相干性无明显的调制,射频系数存在最佳工作区间使得输出光脉冲的波形保真度最佳。当偏置电压处于半波电压时,光脉冲的时域波形保真度最好,时间相干性最低,但光谱成分会缺失。理论仿真了调制器的臂长差、偏置电压对宽带低相干光频域特性的影响,与由实测光谱计算出调制器的臂长差,实验结果进行了对比,结果基本符合。由于实际的电光重叠积分因子随加载电压值变化,因而模拟与实测结果存在误差,但研究得出的规律将为低相干脉冲精密整形系统提供更为明确的方向。
  • 图  1  M-Z型铌酸锂幅度调制器示意图

    Figure  1.  Schematic diagram of M-Z lithium niobate amplitude modulator

    图  2  宽带低相干光实验装置

    Figure  2.  Broadband low-coherent light experimental service

    图  3  SLD光源光谱

    Figure  3.  SLD light source spectrum

    图  4  加载在幅度调制器上的电脉冲波形和幅度调制器输出光脉冲波形对比

    Figure  4.  The electrical pulse loaded on the amplitude modulator is compared with the output light pulse of the amplitude modulator

    图  5  AM输出光脉冲光谱

    Figure  5.  Modulator output light spectra

    图  6  偏置电压与输出光功率的关系

    Figure  6.  Relationship between bias voltage and output light power

    图  7  调制器偏置电压和输出电脉冲波形的关系

    Figure  7.  Relationship between modulator bias voltage and output electrical pulse

    图  8  AM偏置电压对光强的影响

    Figure  8.  Effect of modulator bias voltage on light intensity

    图  9  不同偏置电压时的调制器输出光谱

    Figure  9.  Spectra of output light with different modulator bias voltages

    图  10  调制器射频系数为0.46时,不同偏置电压下输出光脉冲的复相干度曲线

    Figure  10.  Complex coherence curves of output optical pulses under different bias voltages when the RF coefficient of the modulator is 0.46

    图  11  调制器射频系数为0.46时,AM偏置电压对光脉冲时间相干性的影响

    Figure  11.  Influence of AM bias voltage on the temporal coherence when the RF coefficient of the modulator is 0.46

    图  12  调制器偏置电压为2.475 V时,不同射频系数下输出光脉冲的复相干度曲线

    Figure  12.  Complex coherence curves of output optical pulses with different RF coefficients when the bias voltage is 2.475 V

  • [1] 康洞国, 郑无敌, 王敏, 等. 激光聚变冲击波点火的热斑形成机制[J]. 强激光与粒子束, 2015, 27:032005 doi: 10.11884/HPLPB201527.032005

    Kang Dongguo, Zheng Wudi, Wang Min, et al. Forming mechanism of hot spot in shock ignition scheme to laser fusion[J]. High Power Laser and Particle Beams, 2015, 27: 032005 doi: 10.11884/HPLPB201527.032005
    [2] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the optical society of America B, 2010, 27(11): B63-B92. doi: 10.1364/JOSAB.27.000B63
    [3] Glenzer S H, Froula D H, Divol L, et al. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas[J]. Nature Physics, 2007, 3(10): 716-719. doi: 10.1038/nphys709
    [4] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
    [5] Dorrer C, Hill E M, Zuegel J D. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 2020, 28(1): 451-471. doi: 10.1364/OE.28.000451
    [6] Dorrer C, Spilatro M, Herman S, et al. Broadband sum-frequency generation of spectrally incoherent pulses[J]. Optics Express, 2021, 29(11): 16135-16152. doi: 10.1364/OE.424167
    [7] Gao Yanqi, Cui Yong, Ji Lailin, et al. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5: 065201. doi: 10.1063/5.0009319
    [8] 高妍琦, 季来林, 崔勇, 等. kJ级宽带低相干激光驱动装置[J]. 强激光与粒子束, 2020, 32:011004 doi: 10.11884/HPLPB202032.190427

    Gao Yanqi, Ji Lailin, Cui Yong, et al. kJ low-coherence broadband Nd: glass laser driver facility[J]. High Power Laser and Particle Beams, 2020, 32: 011004 doi: 10.11884/HPLPB202032.190427
    [9] 郑万国, 李平, 张锐, 等. 高功率激光装置光束精密调控性能研究进展[J]. 强激光与粒子束, 2020, 32:011003 doi: 10.11884/HPLPB202032.190469

    Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003 doi: 10.11884/HPLPB202032.190469
    [10] 宗兆玉, 赵军普, 李森, 等. 高稳定激光脉冲波形精密调控技术研究与应用[J]. 强激光与粒子束, 2022, 34:031011

    Zong Zhaoyu, Zhao Junpu, Li Sen, et al. Precise laser pulse shaping technology and application with high energy stability[J]. High Power Laser and Particle Beams, 2022, 34: 031011
    [11] Nakatsuka M, Miyanaga N, Kanabe T, et al. Partially coherent light sources for ICF experiment[C]//Proceedings of SPIE 1870, Laser Coherence Control: Technology and Applications. 1993: 151-162.
    [12] Nakano H, Kanabe T, Yagi K, et al. Amplification and propagation of partially coherent amplified spontaneous emission from Nd: glass[J]. Optics Communications, 1990, 78(2): 123-127. doi: 10.1016/0030-4018(90)90107-5
    [13] Nakano H, Tsubakimoto K, Miyanaga N, et al. Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd: glass laser system[J]. Journal of Applied Physics, 1993, 73(5): 2122-2131. doi: 10.1063/1.353159
    [14] Nakano H, Miyanaga N, Yagi K, et al. Partially coherent light generated by using single and multimode optical fibers in a high-power Nd: glass laser system[J]. Applied Physics Letters, 1993, 63(5): 580-582. doi: 10.1063/1.109955
    [15] Wisoff P J, Bowers M W, Erbert G V, et al. NIF injection laser system[C]//Proceedings of SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility. 2004: 146-155.
    [16] Peng Hansheng, Zhang Xiaomin, Wei X F, et al. Design of 60-kJ SG-III laser facility and related technology development[C]//Proceedings of SPIE 4424, ECLIM 2000: 26th European Conference on Laser Interaction with Matter. 2001: 98-103.
    [17] Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute instabilities driven by a broadband laser[J]. Physics of Plasmas, 2019, 26: 062111. doi: 10.1063/1.5098479
    [18] Rao Daxing, Gao Yanqi, Cui Yong, et al. 1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control[J]. Optics & Laser Technology, 2020, 122: 105850.
    [19] 黄小东. ICF激光驱动器前端系统关键技术研究[D]. 济南: 山东大学, 2010

    Huang Xiaodong. Research on key technology in ICF laser driver frontend system[D]. Ji’nan: Shandong University, 2010
    [20] Wolf E. 光的相干与偏振理论导论[M]. 蒲继雄, 译. 北京: 北京大学出版社, 2014

    Wolf E. Introduction to the theory of coherence and polarization of light[M]. Pu Jixiong, trans. Beijing: Peking University Press, 2014
  • 加载中
图(12)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  196
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 修回日期:  2022-11-25
  • 录用日期:  2023-01-10
  • 网络出版日期:  2023-01-31
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回