留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外探测系统的激光辐照热效应仿真分析

袁磊 王毕艺 罗超 郦文忠 冉均均 柳建

袁磊, 王毕艺, 罗超, 等. 红外探测系统的激光辐照热效应仿真分析[J]. 强激光与粒子束, 2023, 35: 021003. doi: 10.11884/HPLPB202335.220157
引用本文: 袁磊, 王毕艺, 罗超, 等. 红外探测系统的激光辐照热效应仿真分析[J]. 强激光与粒子束, 2023, 35: 021003. doi: 10.11884/HPLPB202335.220157
Yuan Lei, Wang Biyi, Luo Chao, et al. Simulation analysis of thermal effect of laser irradiation in infrared detection system[J]. High Power Laser and Particle Beams, 2023, 35: 021003. doi: 10.11884/HPLPB202335.220157
Citation: Yuan Lei, Wang Biyi, Luo Chao, et al. Simulation analysis of thermal effect of laser irradiation in infrared detection system[J]. High Power Laser and Particle Beams, 2023, 35: 021003. doi: 10.11884/HPLPB202335.220157

红外探测系统的激光辐照热效应仿真分析

doi: 10.11884/HPLPB202335.220157
基金项目: 光电信息控制和安全技术重点实验室开放基金项目(6142107190310)
详细信息
    作者简介:

    袁 磊,yuanlei11@163.com

    通讯作者:

    王毕艺,wangbiyi530@163.com

  • 中图分类号: TN215

Simulation analysis of thermal effect of laser irradiation in infrared detection system

  • 摘要: 为研究红外探测系统受激光辐照后的热效应与二次热辐射对探测器成像的影响,使用Ansys软件对红外探测器进行热辐射仿真和有限元结构仿真;采用黑体辐射定律和DO辐射计算模型模拟计算探测器内光学系统在不同激光辐照度下的温度随时间变化情况以及探测器内部温升对靶面成像的二次热辐射干扰情况;采用热弹性力学模型仿真计算探测器内部的热应力和热变形情况。结果表明:探测器受到1.06 μm激光照射,矫正镜激光辐照度在50 W/cm2时,靶面受到二次热辐照度在0.6 s时达到100 μW/cm2的量级,使红外探测器达到饱和;探测器受激光辐照后系统最高温度出现在矫正镜中心处,拟合得到系统最高温度与受照时间函数关系,可预测探测器升温结构破坏;最大热变形出现在矫正镜背面中心处,由外向内形成不等附加光程差,干扰探测器的成像效果;最大热应力出现在矫正镜前面中心处,得到最大热应力与激光辐照度间的线性关系曲线,为矫正镜热应力破坏提供预测参数。
  • 图  1  探测器结构及光路图

    Figure  1.  Diagram of detector structure and optical path

    图  2  探测器网格模型

    Figure  2.  Detector grid model

    图  3  50 W/cm2平均激光辐照度下照射10 s内各镜片温度变化曲线

    Figure  3.  Temperature curve of each lens within 10 s after irradiation with average laser irradiance of 50 W/cm2

    图  4  不同激光辐照度下系统最高温度随时间变化情况

    Figure  4.  Maximum temperature of the system varies with time under different laser irradiance

    图  5  探测器受激光辐照10 s时的热应变云图

    Figure  5.  Thermal strain cloud image of detector irradiated by laser for 10 s

    图  6  探测器受激光辐照10 s时镜片热应力云图

    Figure  6.  Thermal stress cloud images of detector irradiated by laser for 10 s

    图  7  矫正镜在不同激光辐照度下镜面热变形量

    Figure  7.  The thermal deformation of the mirror under different laser irradiance

    图  8  靶面受二次辐照随时间变化曲线

    Figure  8.  Curve of the amount of secondary irradiation on target surface with time

    表  1  模型参数表

    Table  1.   Model parameter list

    partsgeometric radius/mmwaist radius/mmgrid typegrid size/mmgrid number
    primary mirror5151Hex32100
    secondary mirror18.518.5Hex3417
    corrective lens12.58Hex1.5786
    target5.5Hex1449
    hood12551Hex324858
    fluid150Tet61116834
    下载: 导出CSV

    表  2  材料参数表

    Table  2.   Material parameters

    materialdensity/(kg·m−3specific heat capacity/J·(kg·K)−1thermal conductivity/W·(m·K)−1absorption coefficient/m−1refractive index
    Si2328.37001488641.5
    MgF2317710030.31.41.48
    Al2700934.92237171
    Air1.2251006.430.024201
    下载: 导出CSV

    表  3  材料物性参数表

    Table  3.   Material property parameters

    materialdensity/(kg·m3elasticity modulus/GPaPoisson ratiodilatation coefficient/K−1melting point/K
    Si23301900.242.5×10−61687
    MgF231771.320.2767×10−61528
    Al2700700.32.46×10−6933
    下载: 导出CSV

    表  4  探测器在不同激光辐照度下10 s时的最大热应力和热应变表

    Table  4.   Maximum thermal stress and thermal strain of the detector for 10 s irradiation at different laser irradiance

    irradiation intensity/(W·cm−2maximum stress/MPamaximum strain/μm
    5078.24.4
    100156.58.8
    300476.726.38
    500773.143.6
    下载: 导出CSV
  • [1] 刘炜, 牛誉霏, 肖龙龙, 等. 红外焦平面阵列及星载红外成像系统的发展[J]. 红外, 2021, 42(11):15-24

    Liu Wei, Niu Yufei, Xiao Longlong, et al. Development of infrared focal plane array and spaceborne infrared imaging system[J]. Infrared, 2021, 42(11): 15-24
    [2] 张晓菲. 红外成像系统及其超分辨率重建技术的研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020

    Zhang Xiaofei. Study on the imaging and super-resolution reconstruction of the infrared optical system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020
    [3] 闫晶. 高变倍比红外连续变焦光学系统设计研究[D]. 长春: 长春理工大学, 2014

    Yan Jing. Design & research of high ratio IR continuous zoom system[D]. Changchun: Changchun University of Science and Technology, 2014
    [4] 杨小乐, 史漫丽, 凌龙. 制冷型红外探测器关键驱动与信号处理电路设计[J]. 红外技术, 2016, 38(7):556-560 doi: 10.11846/j.issn.1001_8891.201607004

    Yang Xiaole, Shi Manli, Ling Long. Design of the key driving and signal processing circuit for cooled infrared detector[J]. Infrared Technology, 2016, 38(7): 556-560 doi: 10.11846/j.issn.1001_8891.201607004
    [5] 邢素霞, 张俊举, 常本康, 等. 非制冷红外热成像技术的发展与现状[J]. 红外与激光工程, 2004, 33(5):441-444 doi: 10.3969/j.issn.1007-2276.2004.05.001

    Xing Suxia, Zhang Junju, Chang Benkang, et al. Recent development and status of uncooled IR thermal imaging technology[J]. Infrared and Laser Engineering, 2004, 33(5): 441-444 doi: 10.3969/j.issn.1007-2276.2004.05.001
    [6] 史衍丽. 第三代红外探测器的发展与选择[J]. 红外技术, 2013, 35(1):1-8

    Shi Yanli. Choice and development of the third-generation infrared detectors[J]. Infrared Technology, 2013, 35(1): 1-8
    [7] 石永山. 红外焦平面成像技术的军事应用与发展[J]. 舰船电子工程, 2009, 29(10):21-24,39 doi: 10.3969/j.issn.1627-9730.2009.10.006

    Shi Yongshan. Application and the development of the abroad infrared stealth technology[J]. Ship Electronic Engineering, 2009, 29(10): 21-24,39 doi: 10.3969/j.issn.1627-9730.2009.10.006
    [8] 刘永昌, 陈洪印. 红外制导与红外对抗技术分析[J]. 红外技术, 1997, 15(1):15-20

    Liu Yongchang, Chen Hongyin. Analysis of IR guidance and IRCM techniques[J]. Infrared Technology, 1997, 15(1): 15-20
    [9] 王岭雪, 蔡毅. 红外成像光学系统进展与展望[J]. 红外技术, 2019, 41(1):1-12

    Wang Lingxue, Cai Yi. Recent progress and perspectives of infrared optical systems[J]. Infrared Technology, 2019, 41(1): 1-12
    [10] 文爽. 基于卡尔曼滤波的参与性介质时变热流与温度场在线重构[D]. 哈尔滨: 哈尔滨工业大学, 2020

    Wen Shuang. Online retrieval of time-varying heat flux and temperature field in participating media based on Kalman filtering[D]. Harbin: Harbin Institute of Technology, 2020
    [11] Ebrahimpour Z, Sheikholeslami M, Farshad S A, et al. Solar energy application for LFR unit with trapezoidal cavity receiver considering radiative mode[J]. Physica Scripta, 2020, 95: 125701. doi: 10.1088/1402-4896/abc20e
    [12] 付丽荣. 对流—辐射耦合传热模拟及其在柴油机缸内过程应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2016

    Fu Lirong. Numerical simulation of convection and radiation combined heat transfer and study of the in-cylinder radiation heat transfer[D]. Harbin: Harbin Engineering University, 2016
    [13] 尚钢. 热冲击下分区均质材料耦合热弹性问题的变分原理[J]. 武汉大学学报(自然科学版), 1999, 45(5A):610-612

    Shang Gang. Variational principles on coupled thermal-elasticity of zoned homogeneous materials under thermal shock[J]. Journal of Wuhan University (Natural Science Edition), 1999, 45(5A): 610-612
    [14] 李欢, 胡亮, 孟祥福, 等. 基于ANSYS Workbench的光学探测系统热-结构仿真分析[J]. 红外技术, 2020, 42(12):1141-1150

    Li Huan, Hu Liang, Meng Xiangfu, et al. Simulation analysis of thermal-structure of an optical detection system[J]. Infrared Technology, 2020, 42(12): 1141-1150
    [15] 任嘉木. 复合脉冲激光辐照下元件损伤特性研究[D]. 西安: 西安工业大学, 2021

    Ren Jiamu. Investigation on damage characteristics of element under composite pulse laser irradiation[D]. Xi'an: Xi'an Technological University, 2021
    [16] 张成, 许宏, 赵万利, 等. 激光对红外探测系统产生的二次辐射效应[J]. 光电技术应用, 2021, 36(4):33-36 doi: 10.3969/j.issn.1673-1255.2021.04.009

    Zhang Cheng, Xu Hong, Zhao Wanli, et al. Effect of second radiation on laser to infrared detection system[J]. Electro-Optic Technology Application, 2021, 36(4): 33-36 doi: 10.3969/j.issn.1673-1255.2021.04.009
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  214
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-09-29
  • 录用日期:  2022-10-12
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回