留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of space charge force for a laser-accelerated proton beam

Zhu Jungao Zhao Yuan Lai Meifu Gu Yongli Xu Shixiang Zhou Cangtao Lu Haiyang

朱军高, 赵媛, 赖美福, 等. 激光加速质子束空间电荷力研究[J]. 强激光与粒子束, 2023, 35: 021004. doi: 10.11884/HPLPB202335.220171
引用本文: 朱军高, 赵媛, 赖美福, 等. 激光加速质子束空间电荷力研究[J]. 强激光与粒子束, 2023, 35: 021004. doi: 10.11884/HPLPB202335.220171
Zhu Jungao, Zhao Yuan, Lai Meifu, et al. Study of space charge force for a laser-accelerated proton beam[J]. High Power Laser and Particle Beams, 2023, 35: 021004. doi: 10.11884/HPLPB202335.220171
Citation: Zhu Jungao, Zhao Yuan, Lai Meifu, et al. Study of space charge force for a laser-accelerated proton beam[J]. High Power Laser and Particle Beams, 2023, 35: 021004. doi: 10.11884/HPLPB202335.220171

激光加速质子束空间电荷力研究

doi: 10.11884/HPLPB202335.220171
详细信息
  • 中图分类号: TL501;

Study of space charge force for a laser-accelerated proton beam

Funds: Fundamental Research Program of Shenzhen (SZWD2021007, JCYJ20200109105606426), National Natural Science Foundation of China (92050203), Science and Technology on Plasma Physics Laboratory.
More Information
  • 摘要:

    激光加速器可以输出具有独特品质的质子束,例如µm尺寸、ps脉冲长度和高峰值电流。强流粒子束的空间电荷力效应较强,对面向应用的束流传输提出了挑战。通过二维PIC模拟研究了激光加速后与质子速度接近的电子的影响。采用椭球模型估算空间电荷力的影响,比较不同电荷分布的差异。结果表明每束团质子数超过1010后空间电荷力显著影响质子束传输,甚至严重破坏束流品质。空间电荷力的影响在20 ps后显著减弱,离开靶约1.2 mm。

  • Figure  1.  Schematic of the target and the beam generated in acceleration

    Figure  2.  Beam expansion with a waterbag distribution. Plots show the charge distribution on grid points in the zx plane at 0 ps, 20 ps, 50 ps, 100 ps after the laser interaction with the target

    Figure  3.  Influence of space charge in different charge distribution models on the evolution of electric fields and beam parameters within 100 ps after the laser interaction with the target

    Figure  4.  Influence of space charge for different values of total charge on the evolution of electric fields and beam parameters within 100 ps after the laser interaction with the target

    Table  1.   Proton and electron numbers for simulations with different targets

    thickness/μmdensity/(g/cm3)proton numberelectron number
    aluminum2.52.74.22×1077.63×1010
    polymer1.21.1869.91×1073.87×1010
    DLC0.00532.15×1072.78×108
    下载: 导出CSV
  • [1] Mulser P, Bauer D, Ruhl H. Collisionless laser-energy conversion by anharmonic resonance[J]. Physical Review Letters, 2008, 101: 225002. doi: 10.1103/PhysRevLett.101.225002
    [2] Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
    [3] Hegelich B M, Albright B J, Cobble J, et al. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 2006, 439(7075): 441-444. doi: 10.1038/nature04400
    [4] Fuchs J, Antici P, D’Humières E, et al. Laser-driven proton scaling laws and new paths towards energy increase[J]. Nature Physics, 2006, 2(1): 48-54. doi: 10.1038/nphys199
    [5] Esirkepov T, Borghesi M, Bulanov S V, et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 2004, 92: 175003. doi: 10.1103/PhysRevLett.92.175003
    [6] Yan Xueqing, Lin C, Sheng Z M, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 2008, 100: 135003. doi: 10.1103/PhysRevLett.100.135003
    [7] Kar S, Kakolee K F, Qiao Bin, et al. Ion acceleration in multispecies targets driven by intense laser radiation pressure[J]. Physical Review Letters, 2012, 109: 185006. doi: 10.1103/PhysRevLett.109.185006
    [8] Weng Suming, Sheng Z M, Murakami M, et al. Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition[J]. Matter and Radiation at Extremes, 2018, 3(1): 28-39. doi: 10.1016/j.mre.2017.09.002
    [9] Tripathi V K, Liu T C, Shao Xi. Laser radiation pressure proton acceleration in gaseous target[J]. Matter and Radiation at Extremes, 2017, 2(5): 256-262. doi: 10.1016/j.mre.2017.07.001
    [10] Yin Lilan, Albright B J, Bowers K J, et al. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets[J]. Physical Review Letters, 2011, 107: 045003. doi: 10.1103/PhysRevLett.107.045003
    [11] Wagner F, Deppert O, Brabetz C, et al. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets[J]. Physical Review Letters, 2016, 116: 205002. doi: 10.1103/PhysRevLett.116.205002
    [12] Kim I J, Pae K H, Choi I W, et al. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses[J]. Physics of Plasmas, 2016, 23: 070701. doi: 10.1063/1.4958654
    [13] Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communications, 2018, 9: 724. doi: 10.1038/s41467-018-03063-9
    [14] Dromey B, Coughlan M, Senje L, et al. Picosecond metrology of laser-driven proton bursts[J]. Nature Communications, 2016, 7: 10642. doi: 10.1038/ncomms10642
    [15] Nakamura T, Sakagami H, Johzaki T, et al. Optimization of cone target geometry for fast ignition[J]. Physics of Plasmas, 2007, 14: 103105. doi: 10.1063/1.2789561
    [16] Atzeni S, Temporal M, Honrubia J J. A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons[J]. Nuclear Fusion, 2002, 42(3): L1-L4. doi: 10.1088/0029-5515/42/3/101
    [17] Fernández J C, Honrubia J J, Albright B J, et al. Progress and prospects of ion-driven fast ignition[J]. Nuclear Fusion, 2009, 49: 065004. doi: 10.1088/0029-5515/49/6/065004
    [18] Cutroneo M, Torrisi L, Ullschmied J, et al. Multi-energy ion implantation from high-intensity laser[J]. Nukleonika, 2016, 61(2): 109-113. doi: 10.1515/nuka-2016-0019
    [19] Jagielski J, Piatkowska A, Aubert P, et al. Ion implantation for surface modification of biomaterials[J]. Surface and Coatings Technology, 2006, 200: 6355-6361. doi: 10.1016/j.surfcoat.2005.11.005
    [20] Romagnani L, Fuchs J, Borghesi M, et al. Dynamics of electric fields driving the laser acceleration of multi-MeV protons[J]. Physical Review Letters, 2005, 95: 195001. doi: 10.1103/PhysRevLett.95.195001
    [21] Zylstra A B, Frenje J A, Grabowski P E, et al. Measurement of charged-particle stopping in warm dense plasma[J]. Physical Review Letters, 2015, 114: 215002. doi: 10.1103/PhysRevLett.114.215002
    [22] Riley D. Generation and characterisation of warm dense matter with intense lasers[J]. Plasma Physics and Controlled Fusion, 2018, 60: 14033. doi: 10.1088/1361-6587/aa8dd5
    [23] Hoffmann D H H, Blazevic A, Ni P, et al. Present and future perspectives for high energy density physics with intense heavy ion and laser beams[J]. Laser and Particle Beams, 2005, 23(1): 47-53.
    [24] Patel P K, Mackinnon A J, Key M H, et al. Isochoric heating of solid-density matter with an ultrafast proton beam[J]. Physical Review Letters, 2003, 91: 125004. doi: 10.1103/PhysRevLett.91.125004
    [25] Jung D, Yin Lilan, Albright B J, et al. Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light[J]. Physical Review Letters, 2011, 107: 115002. doi: 10.1103/PhysRevLett.107.115002
    [26] Schollmeier M, Becker S, Geißel M, et al. Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices[J]. Physical Review Letters, 2008, 101: 055004. doi: 10.1103/PhysRevLett.101.055004
    [27] Zhu Jungao, Zhu Kun, Tao Li, et al. Beam line design of compact laser plasma accelerator[J]. Chinese Physics Letters, 2017, 34: 054101. doi: 10.1088/0256-307X/34/5/054101
    [28] Kraft S D, Richter C, Zeil K, et al. Dose-dependent biological damage of tumour cells by laser-accelerated proton beams[J]. New Journal of Physics, 2010, 12: 085003. doi: 10.1088/1367-2630/12/8/085003
    [29] Zhu J G, Wu Minjian, Zhu K, et al. Demonstration of tailored energy deposition in a laser proton accelerator[J]. Physical Review Accelerators and Beams, 2020, 23: 121304. doi: 10.1103/PhysRevAccelBeams.23.121304
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  125
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-12-03
  • 网络出版日期:  2022-12-08
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回