留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光驱动线圈靶磁场产生及应用研究进展

原晓霞 周沧涛 张华 吴思忠 陈鹏 滕建 张博 仲佳勇

原晓霞, 周沧涛, 张华, 等. 强激光驱动线圈靶磁场产生及应用研究进展[J]. 强激光与粒子束, 2023, 35: 021002. doi: 10.11884/HPLPB202335.220188
引用本文: 原晓霞, 周沧涛, 张华, 等. 强激光驱动线圈靶磁场产生及应用研究进展[J]. 强激光与粒子束, 2023, 35: 021002. doi: 10.11884/HPLPB202335.220188
Yuan Xiaoxia, Zhou Cangtao, Zhang Hua, et al. Research progress on generation and application of the magnetic field of intense laser-driven coil target[J]. High Power Laser and Particle Beams, 2023, 35: 021002. doi: 10.11884/HPLPB202335.220188
Citation: Yuan Xiaoxia, Zhou Cangtao, Zhang Hua, et al. Research progress on generation and application of the magnetic field of intense laser-driven coil target[J]. High Power Laser and Particle Beams, 2023, 35: 021002. doi: 10.11884/HPLPB202335.220188

强激光驱动线圈靶磁场产生及应用研究进展

doi: 10.11884/HPLPB202335.220188
详细信息
    作者简介:

    原晓霞,yuanxiaoxia@sztu.edu.cn

    通讯作者:

    周沧涛,zhoucangtao@sztu.edu.cn

    张 华,zhanghua@sztu.edu.cn

  • 中图分类号: O539

Research progress on generation and application of the magnetic field of intense laser-driven coil target

  • 摘要:

    介绍了以强激光驱动电容线圈靶的实验方法产生磁场的基本模型及其发展过程。对比了实验室中常用的三种磁场诊断方法,包含:B-dot、法拉第旋转以及质子背光,发现前两种方法在实验中仅可以获得距离靶较远处的有限个磁场值,通过结合模拟工具获得靶处的磁场值与测量点的值跨越几个数量级,容易产生误差;质子背光诊断可以在实验中获得全局磁场信息,能够较好地满足线圈靶磁场诊断的需求。由于线圈靶磁场强且可持续时间长,在时空分布上具有一定可控性,因此我们将其应用到了磁重联的研究中,并成功获得了重联出流等特征。另外线圈靶在带电粒子的约束和磁流体动力学研究等多方面也得到了应用。

  • 图  1  激光驱动电容线圈靶示意图

    Figure  1.  Schematic diagram of laser-driven capacitor coil target

    图  2  麦克斯韦分布的电子温度(红线)和双温分布的电子温度(蓝线)下随时间变化的线圈电流[20]

    Figure  2.  Coil current as a function of time for Maxwell-distributed electron temperature (red line) and bi-temperature distribution electron temperature (blue line) [20]

    图  3  激光驱动电容线圈靶实验磁场诊断排布示意图[11]

    Figure  3.  Schematic diagram of the magnetic field diagnosis arrangement of the laser-driven capacitor coil target experiment[11]

    图  4  B-dot测量磁场原理示意图

    Figure  4.  Schematic diagram of the principle of B-dot magnetic probe measuring magnetic field

    图  5  无磁场和有磁场情况下探针光的水平和垂直偏振分量的条纹图像[29]

    Figure  5.  Fringe images of the horizontal and vertical polarization components of the probe light without magnetic field and with magnetic field[29]

    图  6  实验和模拟给出的质子背光结果[11]

    Figure  6.  Experimental and simulation results of proton backlighting[11]

    图  7  激光设备上激光驱动线圈靶磁重联实验设置[19]

    Figure  7.  Experiment setup of the laser-driven capacitor-coil target on laser facilities[19]

    图  8  外加磁场下相对论电子束的传输实验设置示意图[16]

    Figure  8.  Experimental configuration for relativistic electron beam transport with imposed B-field[16]

    图  9  研究 HEDP 在外部磁场中的流体动力学的实验示意图[18]

    Figure  9.  Schematic diagram of the experiment to study the hydrodynamics of HEDP in an external magnetic field

  • [1] Shibata K, Magara T. Solar flares: magnetohydrodynamic processes[J]. Living Rev Sol Phys, 2011, 8: 6.
    [2] Yuan Feng, Zhang Bing. Episodic jets as the central engine of gamma-ray bursts[J]. Astrophys J, 2012, 757: 56. doi: 10.1088/0004-637X/757/1/56
    [3] Meinecke J, Doyle H W, Miniati F, et al. Turbulent amplification of magnetic fields in laboratory laser-produced shock waves[J]. Nat Phys, 2014, 10(7): 520-524. doi: 10.1038/nphys2978
    [4] Balbus S A, Hawley J F. A powerful local shear instability in weakly magnetized disks. I-Linear analysis. II-Nonlinear evolution[J]. Astrophys J, 1991, 376: 214-233. doi: 10.1086/170270
    [5] Nilson P M, Willingale L, Kaluza M C, et al. Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions[J]. Phys Rev Lett, 2006, 97: 255001. doi: 10.1103/PhysRevLett.97.255001
    [6] Li C K, Séguin F H, Frenje J A, et al. Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas[J]. Phys Rev Lett, 2007, 99: 055001. doi: 10.1103/PhysRevLett.99.055001
    [7] Zhong Jiayong, Li Yutong, Wang Xiaogang, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nat Phys, 2010, 6(12): 984-987. doi: 10.1038/nphys1790
    [8] http://www.naturechina.com.cn/nchina/2010/101201/full/nchina.2010.136.html.
    [9] Daido H, Miki F, Mima K, et al. Generation of a strong magnetic field by an intense CO2 laser pulse[J]. Phys Rev Lett, 1986, 56(8): 846-849. doi: 10.1103/PhysRevLett.56.846
    [10] Courtois C, Ash A D, Chambers D M, et al. Creation of a uniform high magnetic-field strength environment for laser-driven experiments[J]. J Appl Phys, 2005, 98: 054913. doi: 10.1063/1.2035896
    [11] Santos J J, Bailly-Grandvaux M, Giuffrida L, et al. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields[J]. New J Phys, 2015, 17: 083051. doi: 10.1088/1367-2630/17/8/083051
    [12] Wang Weiwu, Cai Hongbo, Teng Jian, et al. Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target[J]. Phys Plasmas, 2018, 25: 083111. doi: 10.1063/1.5000991
    [13] Pei Xiaoxing, Zhong Jiayong, Sakawa Y, et al. Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target[J]. Phys Plasmas, 2016, 23: 032125. doi: 10.1063/1.4944928
    [14] Zhang Jie, Wang Weimin, Yang Xiaohu, et al. Double-cone ignition scheme for inertial confinement fusion[J]. Philos Trans Roy Soc A: Math, Phys Eng Sci, 2020, 378: 20200015.
    [15] Cai Hongbo, Zhu Shaoping, He Xiantu. Effects of the imposed magnetic field on the production and transport of relativistic electron beams[J]. Phys Plasmas, 2013, 20: 072701. doi: 10.1063/1.4812631
    [16] Bailly-Grandvaux M, Santos J J, Bellei C, et al. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields[J]. Nat Commun, 2018, 9: 102. doi: 10.1038/s41467-017-02641-7
    [17] Arefiev A, Toncian T, Fiksel G. Enhanced proton acceleration in an applied longitudinal magnetic field[J]. New J Phys, 2016, 18: 105011. doi: 10.1088/1367-2630/18/10/105011
    [18] Matsuo K, Nagatomo H, Zhang Zhe, et al. Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field[J]. Phys Rev E, 2017, 95: 053204. doi: 10.1103/PhysRevE.95.053204
    [19] Yuan Xiaoxia, Zhong Jiayong, Zhang Zhe, et al. Low-β magnetic reconnection driven by the intense lasers with a double-turn capacitor-coil[J]. Plasma Phys Control Fusion, 2018, 60: 065009. doi: 10.1088/1361-6587/aabaa9
    [20] Fiksel G, Fox W, Gao Lan, et al. A simple model for estimating a magnetic field in laser-driven coils[J]. Appl Phys Lett, 2016, 109: 134103. doi: 10.1063/1.4963763
    [21] Korobkin V V, Motylev S L. On a possibility of using laser radiation for generation of strong magnetic fields[J]. Sov Tech Phys Lett, 1979, 5: 474.
    [22] Goyon C, Pollock B B, Turnbull D P, et al. Ultrafast probing of magnetic field growth inside a laser-driven solenoid[J]. Phys Rev E, 2017, 95: 033208. doi: 10.1103/PhysRevE.95.033208
    [23] Tikhonchuk V T, Bailly-Grandvaux M, Santos J J, et al. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly[J]. Phys Rev E, 2017, 96: 023202. doi: 10.1103/PhysRevE.96.023202
    [24] Williams G J, Patankar S, Mariscal D A, et al. Laser intensity scaling of the magnetic field from a laser-driven coil target[J]. J Appl Phys, 2020, 127: 083302. doi: 10.1063/1.5117162
    [25] Morita H, Pollock B B, Goyon C S, et al. Dynamics of laser-generated magnetic fields using long laser pulses[J]. Phys Rev E, 2021, 103: 033201. doi: 10.1103/PhysRevE.103.033201
    [26] 王为武, 单连强, 田超, 等. 一种脉冲强电流条件下导线电阻测量方法[J]. 强激光与粒子束, 2020, 32:082001 doi: 10.11884/HPLPB202032.200057

    Wang Weiwu, Shan Lianqiang, Tian Chao, et al. A method for estimating coil resistance with pulsed strong electric current[J]. High Power Laser and Particle Beams, 2020, 32: 082001 doi: 10.11884/HPLPB202032.200057
    [27] 谭榕容, 冉汉政, 程刚. 基于B-Dot的kA级短脉冲电流测量方法[J]. 太赫兹科学与电子信息学报, 2015, 13(6):990-994,999 doi: 10.11805/TKYDA201506.0990

    Tan Rongrong, Ran Hanzheng, Cheng Gang. Measurement of kA-level short pulse current based on B-Dot[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(6): 990-994,999 doi: 10.11805/TKYDA201506.0990
    [28] Zhu Baojun, Li Yutong, Yuan Dawei, et al. Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses[J]. Appl Phys Lett, 2015, 107: 261903. doi: 10.1063/1.4939119
    [29] Fujioka S, Zhang Zhe, Ishihara K, et al. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser[J]. Sci Rep, 2013, 3: 1170. doi: 10.1038/srep01170
    [30] Yamada M, Ji Hantao, Hsu S, et al. Study of driven magnetic reconnection in a laboratory plasma[J]. Phys Plasmas, 1997, 4(5): 1936-1944. doi: 10.1063/1.872336
    [31] Ji Hantao, Daughton W. Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas[J]. Phys Plasmas, 2011, 18: 111207. doi: 10.1063/1.3647505
    [32] Chien A, Gao Lan, Ji Hantao, et al. Study of a magnetically driven reconnection platform using ultrafast proton radiography[J]. Phys Plasmas, 2019, 26: 062113. doi: 10.1063/1.5095960
    [33] Stone J M, Gardiner T. Nonlinear evolution of the magnetohydrodynamic Rayleigh-Taylor instability[J]. Phys Fluids, 2007, 19: 094104. doi: 10.1063/1.2767666
    [34] Morita H, Arefiev A, Toncian T, et al. Application of laser-driven capacitor-coil to target normal sheath acceleration[J]. High Energy Density Phys, 2020, 37: 100874. doi: 10.1016/j.hedp.2020.100874
    [35] Tan Junhao, Li Yifei, Zhu Baojun, et al. Short-period high-strength helical undulator by laser-driven bifilar capacitor coil[J]. Opt Express, 2019, 27(21): 29676-29684. doi: 10.1364/OE.27.029676
    [36] 张杰, 赵刚. 实验室天体物理学简介[J]. 物理, 2000, 29(7):393-396 doi: 10.3321/j.issn:0379-4148.2000.07.003

    Zhang Jie, Zhao Gang. Introduction to laboratory astrophysics[J]. Physics, 2000, 29(7): 393-396 doi: 10.3321/j.issn:0379-4148.2000.07.003
  • 加载中
图(9)
计量
  • 文章访问数:  655
  • HTML全文浏览量:  324
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-10-08
  • 录用日期:  2022-10-28
  • 网络出版日期:  2022-12-29
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回