留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光-等离子体相互作用正电子发射研究进展

蔡达锋 王剑 谷渝秋 郑志坚

蔡达锋, 王剑, 谷渝秋, 等. 激光-等离子体相互作用正电子发射研究进展[J]. 强激光与粒子束, 2023, 35: 072001. doi: 10.11884/HPLPB202335.220189
引用本文: 蔡达锋, 王剑, 谷渝秋, 等. 激光-等离子体相互作用正电子发射研究进展[J]. 强激光与粒子束, 2023, 35: 072001. doi: 10.11884/HPLPB202335.220189
Cai Dafeng, Wang Jian, Gu Yuqiu, et al. Research evolution of the positron jet generated by intense laser interaction with the plasmas[J]. High Power Laser and Particle Beams, 2023, 35: 072001. doi: 10.11884/HPLPB202335.220189
Citation: Cai Dafeng, Wang Jian, Gu Yuqiu, et al. Research evolution of the positron jet generated by intense laser interaction with the plasmas[J]. High Power Laser and Particle Beams, 2023, 35: 072001. doi: 10.11884/HPLPB202335.220189

激光-等离子体相互作用正电子发射研究进展

doi: 10.11884/HPLPB202335.220189
详细信息
    作者简介:

    蔡达锋,dafeng_cai@aliyun.com

  • 中图分类号: O434.12

Research evolution of the positron jet generated by intense laser interaction with the plasmas

  • 摘要:

    介绍了激光-等离子体相互作用产生正电子的相关实验和数值模拟研究进展。简要回顾了激光-等离子体相互作用正电子的发现过程及激光-等离子体作用产生正电子的三种物理机制;详细地叙述了激光与物质相互作用产生正电子的两类典型实验方式(即直接方式和间接方式)及相关的实验和数值模拟结果;对激光-等离子体相互作用产生正电子的研究进行了评述。从现有研究进展来看,目前理论研究和实验研究所获结论差异较大,还需要从激光设备、实验方案设计以及理论和模拟研究方面做大量细致的工作。

  • 图  1  实验设置[2]

    Figure  1.  Experimental arrangement[2]

    图  2  实验设置示意图(直接方式)[5]

    Figure  2.  Experimental setup (direct). The locations of two spectrometers relative to the lasers and target are marked[5]

    图  3  电子和正电子能谱[5]

    Figure  3.  Energy spectra of electrons and positrons[5]

    图  4  实验设置(直接方式)[6]

    Figure  4.  Experimental setup (direct)[6]

    图  5  正电子能量分布[6]

    Figure  5.  Positron energy distributions beled from A to F. Experimental setup[6]

    图  6  正电子角分布[6]

    Figure  6.  Positron angles distributions[6]

    图  7  实验设置(间接方式)[4]

    Figure  7.  Experimental setup (indirect)[4]

    图  8  电子和正电子能谱[4]

    Figure  8.  Electron and positron energy distributions[4]

    图  9  实验原理图[8]

    Figure  9.  Scheme figure of the experiment[8]

    图  10  实验和模拟的正电子能谱[8]

    Figure  10.  Experimental (solid lines) and simulated (dashed lines) positron spectra[8]

    图  11  激光产生正电子的两种方案示意图[7]

    Figure  11.  Illustration of two laser-positron generation schemes[7]

  • [1] 苑红霞. 正电子的预言与发现[J]. 大学物理, 2002, 21(2):34-36 doi: 10.3969/j.issn.1000-0712.2002.02.013

    Yuan Hongxia. The prediction and discovery positron[J]. Coll Phys, 2002, 21(2): 34-36 doi: 10.3969/j.issn.1000-0712.2002.02.013
    [2] Cowan T E, Perry M D, Key M H, et al. High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments[J]. Laser Part Beams, 1999, 17(4): 773-783. doi: 10.1017/S0263034699174238
    [3] Liu Jianxun, Gan Longfei, Ma Yanyun, et al. Positron generation via two sequent laser pulses irradiating a solid aluminum target[J]. Phys Plasmas, 2017, 24: 083113. doi: 10.1063/1.5000065
    [4] Gahn C, Tsakiris G D, Pretzler G, et al. Generating positrons with femtosecond-laser pulses[J]. Appl Phys Lett, 2000, 77(17): 2662-2664. doi: 10.1063/1.1319526
    [5] Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Phys Rev Lett, 2009, 102: 105001. doi: 10.1103/PhysRevLett.102.105001
    [6] Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Phys Rev Lett, 2010, 105: 015003. doi: 10.1103/PhysRevLett.105.015003
    [7] Yan Yonghong, Zhang Bo, Wu Yuchi, et al. Comparison of direct and indirect positron-generation by an ultra-intense femtosecond laser[J]. Phys Plasmas, 2013, 20: 103114. doi: 10.1063/1.4826219
    [8] Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Phys Rev Lett, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
    [9] Yan Yonghong, Dong Kegong, Wu Yuchi, et al. Numerical simulation study of positron production by intense laser-accelerated electrons[J]. Phys Plasmas, 2013, 20: 103106. doi: 10.1063/1.4824107
    [10] Chen Hui, Fiuza F, Link A, et al. Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications[J]. Phys Rev Lett, 2015, 114: 215001. doi: 10.1103/PhysRevLett.114.215001
    [11] Williams G J, Pollock B B, Albert F, et al. Positron generation using laser-wakefield electron sources[J]. Phys Plasmas, 2015, 22: 093115. doi: 10.1063/1.4931044
    [12] Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Phys Plasmas, 2016, 23: 033109. doi: 10.1063/1.4943280
    [13] Yu Jinqing, Lu Haiyang, Takahashi T, et al. Creation of electron-positron pairs in photon-photon collisions driven by 10-PW laser pulses[J]. Phys Rev Lett, 2019, 122: 014802. doi: 10.1103/PhysRevLett.122.014802
    [14] 闫永宏, 吴玉迟, 董克攻, 等. 激光固体靶相互作用产生正电子的模拟研究[J]. 强激光与粒子束, 2015, 27:112006 doi: 10.11884/HPLPB201527.112006

    Yan Yonghong, Wu Yuchi, Dong Kegong, et al. Simulation study of positron production from laser-solid interactions[J]. High Power Laser Part Beams, 2015, 27: 112006 doi: 10.11884/HPLPB201527.112006
    [15] 冯磊, 马燕云, 赵子甲, 等. 激光尾波场电子轰击多层靶的正电子产额模拟计算[J]. 现代应用物理, 2019, 10:040201

    Feng Lei, Ma Yanyun, Zhao Zijia, et al. Simulation of positron yield increased by the interaction of laser wakefield electrons with multi-layer targets[J]. Mod Appl Phys, 2019, 10: 040201
    [16] Xu Zhangli, Yi Longqing, Shen Baifei, et al. Driving positron beam acceleration with coherent transition radiation[J]. Commun Phys, 2020, 3: 191. doi: 10.1038/s42005-020-00471-6
  • 加载中
图(11)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  129
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2023-01-03
  • 录用日期:  2023-03-27
  • 网络出版日期:  2023-03-30
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回