留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强激光与“霍金-安鲁辐射”实验研究进展综述

赵凯 王友敬 符长波 马余刚

赵凯, 王友敬, 符长波, 等. 超强激光与“霍金-安鲁辐射”实验研究进展综述[J]. 强激光与粒子束, 2023, 35: 012012. doi: 10.11884/HPLPB202335.220197
引用本文: 赵凯, 王友敬, 符长波, 等. 超强激光与“霍金-安鲁辐射”实验研究进展综述[J]. 强激光与粒子束, 2023, 35: 012012. doi: 10.11884/HPLPB202335.220197
Zhao Kai, Wang Youjing, Fu Changbo, et al. Review on Hawking-Unruh radiation studies with high-intensity lasers[J]. High Power Laser and Particle Beams, 2023, 35: 012012. doi: 10.11884/HPLPB202335.220197
Citation: Zhao Kai, Wang Youjing, Fu Changbo, et al. Review on Hawking-Unruh radiation studies with high-intensity lasers[J]. High Power Laser and Particle Beams, 2023, 35: 012012. doi: 10.11884/HPLPB202335.220197

超强激光与“霍金-安鲁辐射”实验研究进展综述

doi: 10.11884/HPLPB202335.220197
基金项目: 国家自然科学基金项目(11875191)
详细信息
    作者简介:

    赵 凯,20110200018@fudan.edu.cn

    通讯作者:

    符长波,cbfu@fudan.edu.cn

  • 中图分类号: O437;O413

Review on Hawking-Unruh radiation studies with high-intensity lasers

  • 摘要: 对利用激光进行霍金-安鲁辐射实验的研究现状和实验挑战点等方面进行综述。霍金-安鲁辐射是量子引力理论的重要推论之一。对其进行实验观测研究,将对量子引力理论、大统一理论、乃至万物终极理论的发展具有重要推动作用。霍金-安鲁辐射可以通过强激光、储存环、潘宁阱、声学、玻色-爱因斯坦凝聚等各种实验手段加以研究,其中借助强激光有两类方法:人工光学黑洞和强激光加速。前者是利用介质的非线性效应,产生一个光波传播的视界,进而对视界附近的量子现象,包括霍金-安鲁辐射,进行研究;后者是利用超强激光场对电子施加的超高加速度来研究电子的霍金-安鲁辐射等特性。
  • 图  1  LmRd费曼图[20]

    Figure  1.  Feynman diagrams of Larmor radiation (LmRd)[20]

    图  2  HUR费曼图[20]

    Figure  2.  Feynman diagram of Hawking-Unruh radiation (HUR)[20]

    图  3  光学人工黑洞实验方案示意图及光谱仪测量HUR光谱中心值随入射激光能量变化趋势图[37]

    Figure  3.  The experimental setup for artificial blackhole and the center of the HUR spectra vs the laser beam energy [37]

    图  4  利用晶体光纤产生黑洞/白洞视界的实验方案

    Figure  4.  Scheme of generating blackhole/whitehole horizons with a crystal fiber [4, 38]

    图  5  LmRd和HUR强度角分布示意图[18]

    Figure  5.  Angular distributions of Larmor and Unruh radiations[18]

    图  6  激光加速电子束与第二束激光相互作用,研究HUR实验方案[18]

    Figure  6.  A proposed setup for studies of HUR by using a laser-accelerated electron beam interacting with another laser beam[18]

    图  7  利用激光加速产生的电子束,与激光加速产生的康普顿散射X束线相互作用,研究HUR实验方案[18]

    Figure  7.  A proposed setup for studies of HUR by using a laser-accelerated electron beam interacting with another laser-accelerated X-ray beam[18]

  • [1] Carlip S. Quantum gravity: a progress report[J]. Reports on Progress in Physics, 2001, 64(8): 885-942. doi: 10.1088/0034-4885/64/8/301
    [2] Howl R, Hackermüller L, Bruschi D E, et al. Gravity in the quantum lab[J]. Advances in Physics: X, 2018, 3: 1383184.
    [3] Xu Renxin, Wu Fei. Ultra high energy cosmic rays: strangelets?[J]. Chinese Physics Letters, 2003, 20(6): 806-809. doi: 10.1088/0256-307X/20/6/308
    [4] Faccio D. Laser pulse analogues for gravity and analogue Hawking radiation[J]. Contemporary Physics, 2012, 53(2): 97-112. doi: 10.1080/00107514.2011.642559
    [5] Hajicek P. Origin of Hawking radiation[J]. Physical Review D, 1987, 36(4): 1065-1079. doi: 10.1103/PhysRevD.36.1065
    [6] Almheiri A, Hartman T, Maldacena J, et al. The entropy of Hawking radiation[J]. Reviews of Modern Physics, 2021, 93: 035002. doi: 10.1103/RevModPhys.93.035002
    [7] Fulling S A. Nonuniqueness of canonical field quantization in Riemannian space-time[J]. Physical Review D, 1973, 7(10): 2850-2862. doi: 10.1103/PhysRevD.7.2850
    [8] Davies P C W. Scalar production in Schwarzschild and Rindler metrics[J]. Journal of Physics A: Mathematical and General, 1975, 8(4): 609-616. doi: 10.1088/0305-4470/8/4/022
    [9] Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 1976, 14(4): 870-892. doi: 10.1103/PhysRevD.14.870
    [10] Crispino L C B, Higuchi A, Matsas G E A. The Unruh effect and its applications[J]. Reviews of Modern Physics, 2008, 80(3): 787-838. doi: 10.1103/RevModPhys.80.787
    [11] Schützhold R, Schaller G, Habs D. Publisher’s note: signatures of the Unruh effect from electrons accelerated by ultrastrong laser fields [Phys. Rev. Lett. 97, 121302 (2006)][J]. Physical Review Letters, 2006, 97: 139904. doi: 10.1103/PhysRevLett.97.139904
    [12] Bays H. Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the Theory of Everything[J]. Expert Review of Cardiovascular Therapy, 2005, 3(3): 393-404. doi: 10.1586/14779072.3.3.393
    [13] Laughlin R B, Pines D. The Theory of Everything[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(1): 28-31. doi: 10.1073/pnas.97.1.28
    [14] Schützhold R, Schaller G, Habs D. Tabletop creation of entangled multi-keV photon pairs and the Unruh effect[J]. Physical Review Letters, 2008, 100: 091301. doi: 10.1103/PhysRevLett.100.091301
    [15] Singleton D, Wilburn S. Hawking radiation, Unruh radiation, and the equivalence principle[J]. Physical Review Letters, 2011, 107: 081102. doi: 10.1103/PhysRevLett.107.081102
    [16] Peña I, Sudarsky D. On the possibility of measuring the Unruh effect[J]. Foundations of Physics, 2014, 44(6): 689-708. doi: 10.1007/s10701-014-9806-0
    [17] Lin S Y, Hu B L. Backreaction and the Unruh effect: new insights from exact solutions of uniformly accelerated detectors[J]. Physical Review D, 2007, 76: 064008. doi: 10.1103/PhysRevD.76.064008
    [18] Thirolf P G, Habs D, Henig A, et al. Signatures of the Unruh effect via high-power, short-pulse lasers[J]. The European Physical Journal D, 2009, 55(2): 379-389. doi: 10.1140/epjd/e2009-00149-x
    [19] Dodonov V V. Current status of the dynamical Casimir effect[J]. Physica Scripta, 2010, 82: 038105. doi: 10.1088/0031-8949/82/03/038105
    [20] Schützhold R, Maia C. Quantum radiation by electrons in lasers and the Unruh effect[J]. The European Physical Journal D, 2009, 55(2): 375-378. doi: 10.1140/epjd/e2009-00038-4
    [21] Levin O, Peleg Y, Peres A. Unruh effect for circular motion in a cavity[J]. Journal of Physics A: Mathematical and General, 1993, 26(12): 3001-3011. doi: 10.1088/0305-4470/26/12/035
    [22] Bell J S, Leinaas J M. The Unruh effect and quantum fluctuations of electrons in storage rings[J]. Nuclear Physics B, 1987, 284: 488-508. doi: 10.1016/0550-3213(87)90047-2
    [23] Belyanin A, Kocharovsky V V, Capasso F, et al. Quantum electrodynamics of accelerated atoms in free space and in cavities[J]. Physical Review A, 2006, 74: 023807. doi: 10.1103/PhysRevA.74.023807
    [24] Fabbri A, Balbinot R. Ramp-up of Hawking radiation in Bose-Einstein-condensate analog black holes[J]. Physical Review Letters, 2021, 126: 111301. doi: 10.1103/PhysRevLett.126.111301
    [25] Gooding C, Biermann S, Erne S, et al. Interferometric Unruh detectors for Bose-Einstein condensates[J]. Physical Review Letters, 2020, 125: 213603. doi: 10.1103/PhysRevLett.125.213603
    [26] Rodríguez-Laguna J, Tarruell L, Lewenstein M, et al. Synthetic Unruh effect in cold atoms[J]. Physical Review A, 2017, 95: 013627. doi: 10.1103/PhysRevA.95.013627
    [27] Kharzeev D. Quantum black Holes and thermalization in relativistic heavy ion collisions[J]. Nuclear Physics A, 2006, 774: 315-324. doi: 10.1016/j.nuclphysa.2006.06.051
    [28] Chen P, Tajima T. Testing Unruh radiation with ultraintense lasers[J]. Physical Review Letters, 1999, 83(2): 256-259. doi: 10.1103/PhysRevLett.83.256
    [29] Euvé L P, Robertson S, James N, et al. Scattering of co-current surface waves on an analogue black hole[J]. Physical Review Letters, 2020, 124: 141101. doi: 10.1103/PhysRevLett.124.141101
    [30] Patrick S, Goodhew H, Gooding C, et al. Backreaction in an analogue black hole experiment[J]. Physical Review Letters, 2021, 126: 041105. doi: 10.1103/PhysRevLett.126.041105
    [31] Pelat A, Gautier F, Conlon S C, et al. The acoustic black hole: a review of theory and applications[J]. Journal of Sound and Vibration, 2020, 476: 115316. doi: 10.1016/j.jsv.2020.115316
    [32] 高南沙, 张智成, 王谦, 等. 声学黑洞研究进展与应用[J]. 科学通报, 2022, 67(12):1203-1213 doi: 10.1360/TB-2021-0439

    Gao Nansha, Zhang Zhicheng, Wang Qian, et al. Progress and applications of acoustic black holes[J]. Chinese Science Bulletin, 2022, 67(12): 1203-1213 doi: 10.1360/TB-2021-0439
    [33] Barceló C, Liberati S, Visser M. Analogue gravity[J]. Living Reviews in Relativity, 2011, 14: 3. doi: 10.12942/lrr-2011-3
    [34] Frercks J. Fizeau’s research program on ether drag: a long quest for a publishable experiment[J]. Physics in Perspective, 2005, 7(1): 35-65. doi: 10.1007/s00016-004-0224-0
    [35] Agrawal G. Nonlinear fiber optics[M]. 5th ed. Oxford: Academic Press, 2013.
    [36] Rubino E, Belgiorno F, Cacciatori S L, et al. Experimental evidence of analogue Hawking radiation from ultrashort laser pulse filaments[J]. New Journal of Physics, 2011, 13: 085005. doi: 10.1088/1367-2630/13/8/085005
    [37] Belgiorno F, Cacciatori S L, Clerici M, et al. Hawking radiation from ultrashort laser pulse filaments[J]. Physical Review Letters, 2010, 105: 203901. doi: 10.1103/PhysRevLett.105.203901
    [38] Philbin T G, Kuklewicz C, Robertson S, et al. Fiber-optical analog of the event horizon[J]. Science, 2008, 319(5868): 1367-1370. doi: 10.1126/science.1153625
    [39] Rubino E, McLenaghan J, Kehr S C, et al. Negative-frequency resonant radiation[J]. Physical Review Letters, 2012, 108: 253901. doi: 10.1103/PhysRevLett.108.253901
    [40] Drori J, Rosenberg Y, Bermudez D, et al. Observation of stimulated Hawking radiation in an optical analogue[J]. Physical Review Letters, 2019, 122: 010404. doi: 10.1103/PhysRevLett.122.010404
    [41] Wang Weibin, Yang Hua, Tang Pinghua, et al. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths[J]. Optics Express, 2013, 21(9): 11215-11226. doi: 10.1364/OE.21.011215
    [42] Petty J, König F. Optical analogue gravity physics: resonant radiation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 378: 20190231. doi: 10.1098/rsta.2019.0231
    [43] Ispirian K A. High energy experimental proposals for the study of Unruh (effect) radiation[C]//Proceedings of the 3rd International Conference on Quantum Electrodynamics and Statistical Physics. 2012: 209-212.
    [44] Ringwald A. Fundamental physics at an X-ray free electron laser[C]//Proceedings of the Electromagnetic Probes of Fundamental Physics. 2003: 63-74.
    [45] Consoli F, Tikhonchuk V T, Bardon M, et al. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 2020, 8: e22. doi: 10.1017/hpl.2020.13
    [46] Han Manfen, Zheng Jinxing, Zeng Xianhu, et al. Investigation of combined degrader for proton facility based on BDSIM/FLUKA Monte Carlo methods[J]. Nuclear Science and Techniques, 2022, 33: 17. doi: 10.1007/s41365-022-01002-4
    [47] Hu Po, Ma Zhiguo, Zhao Kai, et al. Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments[J]. Nuclear Science and Techniques, 2021, 32: 58. doi: 10.1007/s41365-021-00898-8
  • 加载中
图(7)
计量
  • 文章访问数:  842
  • HTML全文浏览量:  337
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-11-04
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回